-
Notifications
You must be signed in to change notification settings - Fork 0
/
posteriorAFT.R
160 lines (123 loc) · 4.76 KB
/
posteriorAFT.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
posteriortimeparameters = function(c, That, lambda2,tau2,sigma2,beta0, betahat, Y, K, epsilon, W, beta, ro,D, r, si, Time,N, sig2.data ) {
numclust <- table(factor(c, levels = 1:K))
activeclass<- which(numclust!=0)
for (j in 1:length(activeclass)) {
reg.blas <- 0
sum <- c(0)
coeff <- 0
## A Temporary matrix that needs to store the standardized regressors
clust <- which(c==activeclass[j])
Ytemp <- matrix(NA, nrow = length(clust), ncol = D)
if (length(clust)==1){
Ytemp <- matrix(0, nrow =1, ncol =D)
} else {
Ytemp <- scale(Y[clust,1:D], center = TRUE, scale = TRUE)
}
### Extra line of code if there are Identical values ###
Ytemp[,colnames(Ytemp)[colSums(is.na(Ytemp)) > 0]] <- 0
### Part where I use the MONOMVN PACKAGE
if (length(clust) > 2){
Ttemp <- as.vector(That[clust])
ntemp <- length(clust)
reg.blas <- blasso(Ytemp, Ttemp, T =1000,thin = 10, RJ = TRUE, beta = as.vector(betahat[activeclass[j],]),lambda2 = lambda2[activeclass[j]],s2 = sigma2[activeclass[j]] ,rd =c(r,si), ab = c(1,1),normalize = TRUE, verb = 0)
sum <- summary(reg.blas, burnin= 500)
## Selecting those features which are relevant
coeff <- unlist(lapply(strsplit(sum$coef[3,], split = ":"), function(x) as.numeric(unlist(x)[2])))
beta0[activeclass[j]] <- coeff[1]
indexplusone <- D+1
ind <- 2:indexplusone
betahat[activeclass[j], ] <- coeff[ind]
ta <- unlist(lapply(strsplit(sum$tau2i[3,], split = ":"), function(x) as.numeric(unlist(x)[2])))
tau2[activeclass[j],] <- ta
sigma2[activeclass[j]] <- sum$s2[3]
lambda2[activeclass[j]] <- sum$lambda2[3]
if(any(is.na(tau2[activeclass[j],])) == TRUE)
{
cnt <- which(is.na(tau2[activeclass[j],]))
repl <- rep(1,length(cnt))
tau2[activeclass[j],cnt] <- repl
}
}else {
### Just Use Prior Parameters if there are two few data points, So just Use Prior Knowledge
priorone <- priordraw(beta, W, epsilon, ro, r, si,N,D, sig2.dat)
beta0[activeclass[j]] <- priorone$beta0
sigma2[activeclass[j]] <- priorone$sigma2
betahat[activeclass[j],1:D] <- priorone$betahat
lambda2[activeclass[j]] <- priorone$lambda2
tau2[activeclass[j], 1:D] <- priorone$tau2
# betahat[activeclass[j],] <- as.vector(priordraw(beta, W, epsilon, ro, r, si,N,D, sig2.dat)$betahat)
#
#
# tempvector <- as.vector(That[clust])
# tempmean <- mean(tempvector)
# tmpscl <- scale(tempvector, center = TRUE, scale =FALSE)
# tempmatrix <- Ytemp
# tempnumber <- length(tempvector)
#
#
# tempD <- matrix( 0, nrow = D, ncol =D)
#
# if(any(is.na(tau2[activeclass[j],])) == TRUE)
# {
# tau2[activeclass[j],] <- priordraw(beta, W, epsilon, ro, r, si,N,D, sig2.dat)$tau2
# }
#
#
#
# for ( i in 1:D ) {
# tempD[i,i] <- tau2[activeclass[j],i]
# }
#
#
#
#
#
#
# ## For updating the sparsity prior
# lambda2[activeclass[j]] <- rgamma(1, shape = r+D, rate = si + tr(tempD) )
#
# #For updating tau2
#
# for ( h in 1:D) {
# tau2[activeclass[j], h] <- (rinv.gaussian(1,mu= sqrt(lambda2[activeclass[j]] * sigma2[activeclass[j]]/ (betahat[activeclass[j],h])^2), lambda = lambda2[activeclass[j]]))^-1
# }
#
# #For updating sigma2
# ## For updating the sigma2 parameter we need temporary matrices
#
# tempprod <- NA
#
# tempscalesigma1 <- as.vector(tmpscl - Ytemp %*% betahat[activeclass[j], ])
#
# tempprod <- tempscalesigma1 %*% tempscalesigma1
#
# tempscalesigma2 <- NA
#
# tempscalesigma2 <- t(betahat[activeclass[j], ] %*% solve(tempD) %*% betahat[activeclass[j], ] )
#
#
# sigma2[activeclass[j]] <- rinvgamma(1, shape = 1+ 0.5 * (tempnumber +D -1), scale = 1 + (0.5* (tempprod + tempscalesigma2 )) )
# ## This is because the error of the model may make it computationally infeasible
#
#
# ## For updating Betahat we need some matrices
# # tempD <- matrix( 0, nrow = D, ncol =D)
# # for ( i in 1:D ) {
# # tempD[i,i] <- tau2[activeclass[j],i]
# # }
# #
# # tempA <- matrix(NA, nrow = D, ncol = D)
# #
# # tempA <- t(Ytemp) %*% Ytemp + solve(tempD)
# #
# #
# # betahat[activeclass[j],] <- mvrnorm(1, mu = solve(tempA) %*% t(tempmatrix) %*% tmpscl, Sigma= sigma2[activeclass[j]] * solve(tempA))
# #
#
# beta0[activeclass[j]] <- rnorm(1, mean = tempmean, sd= sqrt(sigma2[activeclass[j]]/tempnumber))
#
#
}
}
list('beta0' = beta0,'sigma2' = sigma2, 'betahat' = betahat, 'lambda2' = lambda2, 'tau2' = tau2 )
}