-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathPipe.m
195 lines (170 loc) · 8.58 KB
/
Pipe.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
classdef Pipe
properties
iteration
id_inlet
id_outlet
id_zone
time_step
matrix_size
matrix_coefficients
right_hand_side_vector
number_of_equations
%input
specific_heat_capacity
density
specific_heat_capacity_fluid
density_fluid
temperature_inlet
temperature_outlet
temperature_zone
mass_flow_rate
thermal_conductivity
thermal_conductivity_fluid
radius_inner
radius_outer
length
dynamic_viscosity_fluid
dynamic_viscosity_air
density_air
thermal_conductivity_air
specific_heat_capacity_air
prandtl_number_outer = 0.71;
gravitational_acceleration = 9.8;
%calculated
surface_inner
heat_transfer_coefficient
mass
mass_fluid
end
methods
function obj = Pipe(id_inlet, id_outlet, id_zone, solver, specific_heat_capacity, density, specific_heat_capacity_fluid, density_fluid, mass_flow_rate,thermal_conductivity,thermal_conductivity_fluid,radius_inner,radius_outer,length,dynamic_viscosity_fluid,dynamic_viscosity_air,density_air,specific_heat_capacity_air,thermal_conductivity_air)
if nargin > 0
obj.id_inlet = id_inlet;
obj.id_outlet = id_outlet;
obj.id_zone = id_zone;
obj.time_step = solver.time_step;
obj.matrix_size = solver.matrix_size;
obj.specific_heat_capacity = specific_heat_capacity;
obj.density = density;
obj.specific_heat_capacity_fluid = specific_heat_capacity_fluid;
obj.density_fluid = density_fluid;
obj.mass_flow_rate = mass_flow_rate;
obj.thermal_conductivity = thermal_conductivity;
obj.thermal_conductivity_fluid = thermal_conductivity_fluid;
obj.radius_inner = radius_inner;
obj.radius_outer = radius_outer;
obj.length = length;
obj.dynamic_viscosity_fluid = dynamic_viscosity_fluid;
obj.dynamic_viscosity_air = dynamic_viscosity_air;
obj.specific_heat_capacity_air = specific_heat_capacity_air;
obj.thermal_conductivity_air = thermal_conductivity_air;
obj.density_air = density_air;
obj.iteration = 0;
obj.number_of_equations = 1;
obj.matrix_coefficients = zeros(obj.number_of_equations,solver.matrix_size);
obj.right_hand_side_vector = zeros(obj.number_of_equations,1);
obj.temperature_inlet = solver.temperatures(obj.id_inlet);
obj.temperature_outlet = solver.temperatures(obj.id_outlet);
obj.temperature_zone = solver.temperatures(obj.id_zone);
% calculation
obj.surface_inner = obj.calculate_surface_inner();
obj.heat_transfer_coefficient = obj.calculate_heat_transfer_coefficient();
obj.mass = obj.calculate_mass();
obj.mass_fluid = obj.calculate_mass_fluid();
end
end
% inner area of pipe
function A = calculate_surface_inner(obj)
A = 2*pi*obj.radius_inner*obj.length;
end
% equivalent heat transfer coefficient of pipe
function U = calculate_heat_transfer_coefficient(obj)
h_in = obj.calculate_heat_transfer_coefficient_inner();
h_out = obj.calculate_heat_transfer_coefficient_outer();
U = 1/(1/h_in+(obj.radius_inner*log(obj.radius_outer/obj.radius_inner))/obj.thermal_conductivity+obj.radius_inner/(obj.radius_outer*h_out));
end
% heat transfer coefficient of the inner pipe
function h = calculate_heat_transfer_coefficient_inner(obj)
nu = obj.calculate_nusselt_number_inner();
h = nu*obj.thermal_conductivity/(2*obj.radius_inner);
end
% Nusselt number of the inner pipe
function nu = calculate_nusselt_number_inner(obj)
pr = obj.calculate_prandtl_number_inner();
re = obj.calculate_reynolds_number_inner();
nu = 4.36 + 0.086 * (re * pr * (2*obj.radius_inner) / obj.length)^1.33/( 1 + pr * (re * (2*obj.radius_inner) / obj.length)^0.83);
end
% Reynolds number
function re = calculate_reynolds_number_inner(obj)
re = 2 * obj.mass_flow_rate / (pi * obj.radius_inner * obj.dynamic_viscosity_fluid);
end
% Prandtl number
function pr = calculate_prandtl_number_inner(obj)
pr = obj.specific_heat_capacity_fluid * obj.dynamic_viscosity_fluid / obj.thermal_conductivity_fluid;
end
% heat transfer coefficient of the outer pipe
function h = calculate_heat_transfer_coefficient_outer(obj)
nu = obj.calculate_nusselt_number_outer();
h = nu*obj.thermal_conductivity/(2*obj.radius_outer);
end
% Nusselt number of the outer pipe
function nu = calculate_nusselt_number_outer(obj)
pr = obj.prandtl_number_outer();
ra = obj.calculate_rayleigh_number_outer();
nu = (0.6 + 0.387 * ra^(1/6) / (1 + (0.559 / pr)^(9/16))^(8/27))^2;
end
% Rayleigh number
function ra = calculate_rayleigh_number_outer(obj)
beta = obj.thermal_expansion_coefficient_outer();
t_p = (obj.temperature_inlet + obj.temperature_outlet) / 2;
ra = obj.gravitational_acceleration * beta * (t_p - obj.temperature_zone) * (obj.radius_outer * 2)^3 / (obj.dynamic_viscosity_air/obj.density_air)^2;
end
% Thermal Expansion Coefficient of Outer
function beta = thermal_expansion_coefficient_outer(obj)
t_p = (obj.temperature_inlet + obj.temperature_outlet) / 2;
t = (t_p + obj.temperature_zone) / 2;
beta = 1 / t;
end
% Prandtl number
function pr = calculate_prandtl_number_outer(obj)
pr = obj.specific_heat_capacity_air * obj.dynamic_viscosity_air / obj.thermal_conductivity_air;
end
% weight of pipe
function m = calculate_mass(obj)
m = pi*obj.density*(obj.radius_outer^2-obj.radius_inner^2)*obj.length;
end
% weight of fluid inside pipe
function m = calculate_mass_fluid(obj)
m = pi*obj.density_fluid*obj.radius_inner^2*obj.length;
end
% coefficient of inlet temperature
function c = c_ti(obj)
c = (obj.mass*obj.specific_heat_capacity+obj.mass_fluid*obj.specific_heat_capacity_fluid)/(2*obj.time_step)-obj.mass_flow_rate*obj.specific_heat_capacity_fluid+obj.heat_transfer_coefficient*obj.surface_inner/2;
end
% coefficient of outlet temperature
function c = c_to(obj)
c = (obj.mass*obj.specific_heat_capacity+obj.mass_fluid*obj.specific_heat_capacity_fluid)/(2*obj.time_step)+obj.mass_flow_rate*obj.specific_heat_capacity_fluid+obj.heat_transfer_coefficient*obj.surface_inner/2;
end
% coefficient of zone temperature
function c = c_tz(obj)
c = obj.heat_transfer_coefficient*obj.surface_inner;
end
% right-hand coefficient
function c = c_r(obj)
c = (obj.mass*obj.specific_heat_capacity+obj.mass_fluid*obj.specific_heat_capacity_fluid)*(obj.temperature_inlet+obj.temperature_outlet)/(2*obj.time_step);
end
% create matrix of coefficients and right-hand side vector
function obj = create(obj, solver)
obj.iteration = obj.iteration + 1;
obj.temperature_inlet = solver.temperatures(obj.id_inlet);
obj.temperature_outlet = solver.temperatures(obj.id_outlet);
obj.temperature_zone = solver.temperatures(obj.id_zone);
obj.matrix_coefficients = zeros(obj.number_of_equations,obj.matrix_size);
obj.right_hand_side_vector = zeros(obj.number_of_equations,1);
obj.right_hand_side_vector = obj.c_r();
obj.matrix_coefficients(obj.id_inlet) = obj.c_ti();
obj.matrix_coefficients(obj.id_outlet) = obj.c_to();
obj.matrix_coefficients(obj.id_zone) = obj.c_tz();
end
end
end