-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathaux.py
605 lines (455 loc) · 18.7 KB
/
aux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
from joblib import Parallel, delayed
from sympy import *
import numpy as np
import pandas as pd
from datetime import datetime as dt
import matplotlib.pyplot as plt
from matplotlib import animation
import base64
from IPython.display import HTML
# 1996 Miyazawa https://doi.org/10.1006/jmbi.1996.0114
#
# Cys-C, Met-M, Phe-F, Ile-I, Leu-L, Val-V, Trp-W, Tyr-Y, Ala-A, Gly-G, Thr-T, Ser-S, Asn-N, Gln-Q, Asp-D, Glu-E, His-H, Arg-R, Lys-K, Pro-P
imat = [[ -5.44, -4.99, -5.80, -5.50, -5.83, -4.96, -4.95, -4.16, -3.57, -3.16, -3.11, -2.86, -2.59, -2.85, -2.41, -2.27, -3.60, -2.57, -1.95, -3.07], # Cys-C
[ -4.99, -5.46, -6.56, -6.02, -6.41, -5.32, -5.55, -4.91, -3.94, -3.39, -3.51, -3.03, -2.95, -3.30, -2.57, -2.89, -3.98, -3.12, -2.48, -3.45], # Met-M
[ -5.80, -6.56, -7.26, -6.84, -7.28, -6.29, -6.16, -5.66, -4.81, -4.13, -4.28, -4.02, -3.75, -4.10, -3.48, -3.56, -4.77, -3.98, -3.36, -4.25], # Phe-F
[ -5.50, -6.02, -6.84, -6.54, -7.04, -6.05, -5.78, -5.25, -4.58, -3.78, -4.03, -3.52, -3.24, -3.67, -3.17, -3.27, -4.14, -3.63, -3.01, -3.76], # Ile-I
[ -5.83, -6.41, -7.28, -7.04, -7.37, -6.48, -6.14, -5.67, -4.91, -4.16, -4.34, -3.92, -3.74, -4.04, -3.40, -3.59, -4.54, -4.03, -3.37, -4.20], # Leu-L
[ -4.96, -5.32, -6.29, -6.05, -6.48, -5.52, -5.18, -4.62, -4.04, -3.38, -3.46, -3.05, -2.83, -3.07, -2.48, -2.67, -3.58, -3.07, -2.49, -3.32], # Val-V
[ -4.95, -5.55, -6.16, -5.78, -6.14, -5.18, -5.06, -4.66, -3.82, -3.42, -3.22, -2.99, -3.07, -3.11, -2.84, -2.99, -3.98, -3.41, -2.69, -3.73], # Trp-W
[ -4.16, -4.91, -5.66, -5.25, -5.67, -4.62, -4.66, -4.17, -3.36, -3.01, -3.01, -2.78, -2.76, -2.97, -2.76, -2.79, -3.52, -3.16, -2.60, -3.19], # Tyr-Y
[ -3.57, -3.94, -4.81, -4.58, -4.91, -4.04, -3.82, -3.36, -2.72, -2.31, -2.32, -2.01, -1.84, -1.89, -1.70, -1.51, -2.41, -1.83, -1.31, -2.03], # Ala-A
[ -3.16, -3.39, -4.13, -3.78, -4.16, -3.38, -3.42, -3.01, -2.31, -2.24, -2.08, -1.82, -1.74, -1.66, -1.59, -1.22, -2.15, -1.72, -1.15, -1.87], # Gly-G
[ -3.11, -3.51, -4.28, -4.03, -4.34, -3.46, -3.22, -3.01, -2.32, -2.08, -2.12, -1.96, -1.88, -1.90, -1.80, -1.74, -2.42, -1.90, -1.31, -1.90], # Thr-T
[ -2.86, -3.03, -4.02, -3.52, -3.92, -3.05, -2.99, -2.78, -2.01, -1.82, -1.96, -1.67, -1.58, -1.49, -1.63, -1.48, -2.11, -1.62, -1.05, -1.57], # Ser-S
[ -2.59, -2.95, -3.75, -3.24, -3.74, -2.83, -3.07, -2.76, -1.84, -1.74, -1.88, -1.58, -1.68, -1.71, -1.68, -1.51, -2.08, -1.64, -1.21, -1.53], # Asn-N
[ -2.85, -3.30, -4.10, -3.67, -4.04, -3.07, -3.11, -2.97, -1.89, -1.66, -1.90, -1.49, -1.71, -1.54, -1.46, -1.42, -1.98, -1.80, -1.29, -1.73], # Gln-Q
[ -2.41, -2.57, -3.48, -3.17, -3.40, -2.48, -2.84, -2.76, -1.70, -1.59, -1.80, -1.63, -1.68, -1.46, -1.21, -1.02, -2.32, -2.29, -1.68, -1.33], # Asp-D
[ -2.27, -2.89, -3.56, -3.27, -3.59, -2.67, -2.99, -2.79, -1.51, -1.22, -1.74, -1.48, -1.51, -1.42, -1.02, -0.91, -2.15, -2.27, -1.80, -1.26], # Glu-E
[ -3.60, -3.98, -4.77, -4.14, -4.54, -3.58, -3.98, -3.52, -2.41, -2.15, -2.42, -2.11, -2.08, -1.98, -2.32, -2.15, -3.05, -2.16, -1.35, -2.25], # His-H
[ -2.57, -3.12, -3.98, -3.63, -4.03, -3.07, -3.41, -3.16, -1.83, -1.72, -1.90, -1.62, -1.64, -1.80, -2.29, -2.27, -2.16, -1.55, -0.59, -1.70], # Arg-R
[ -1.95, -2.48, -3.36, -3.01, -3.37, -2.49, -2.69, -2.60, -1.31, -1.15, -1.31, -1.05, -1.21, -1.29, -1.68, -1.80, -1.35, -0.59, -0.12, -0.97], # Lys-K
[ -3.07, -3.45, -4.25, -3.76, -4.20, -3.32, -3.73, -3.19, -2.03, -1.87, -1.90, -1.57, -1.53, -1.73, -1.33, -1.26, -2.25, -1.70, -0.97, -1.75]] # Pro-P
imat = np.array(imat)
# the list of aminoacid 1 letter codes
names = ['C','M','F','I','L','V','W','Y','A','G','T','S','N','Q','D','E','H','R','K','P']
# Dictionary for translating 1 letter code to numeric index for MJ interaction matrix
d = {names[i]:i for i in range(len(names))}
def get_combinations(pos):
# This variable holds a list of all possible unique combinations of
# aminoacid in the chain. This is for interaction energy computations
n = len(pos)
comb = np.array(np.meshgrid(range(n), range(n))).T.reshape((-1,2))
comb = comb[comb[:,1]-comb[:,0]>0]
return comb
def total_energy(pos, seq, comb=None):
'''Computes the total energy of the system.
pos: numpy array with shape (n, 2)
'''
if type(seq) == str:
seq = [d[a] for a in seq]
s = seq
if comb is None:
comb = get_combinations(pos)
tot = 0
for c in comb:
dl1 = np.abs(pos[c[1]] - pos[c[0]]).sum()
if dl1 == 0:
# Overlap
tot += 1000
elif dl1 == 1 and c[1] - c[0] > 2:
# Contact
tot += imat[s[c[0]], s[c[1]]]
return tot
# These are the possible directions to choose in random walk
# Only consider moving from the current position
dirs = {
( 1, 0): np.array([( 0, 1),
( -1, 0),
( 0, -1)]),
( 0, 1): np.array([( 1, 0),
( -1, 0),
( 0, -1)]),
( -1, 0): np.array([( 1, 0),
( 0, 1),
( 0, -1)]),
( 0, -1): np.array([( 1, 0),
( 0, 1),
( -1, 0)]),
}
def simulate_trajectory(prot_seq, sched, jobid=0):
Nit = len(sched)
seed = dt.now().microsecond * (jobid + 1)
# Working in parallel, better reseed
np.random.seed(seed)
# The sequence translated to index
s = [d[a] for a in prot_seq]
# length of the sequence
N = len(s)
pos = np.zeros((N, 2))
pos[:,0] = range(N)
tra = np.empty((Nit, N, 2))
comb = get_combinations(pos)
# Random numbers for selecting residue
I = np.random.randint(2, N, size=Nit)
# Random numbers for selecting walking direction
J = np.random.randint(3, size=Nit)
# Third aminoacid walks only up or right. This is to avoid redundant conformations
J[I == 2] = 0
# Throw a dice for proposal acceptance/rejection
K = np.random.uniform(size=Nit)
# History of accepted conformations
H = np.empty((Nit,))
# Energy trace
E = np.empty((Nit,))
# measure current energy
E0 = total_energy(pos, s, comb)
# main loop
for it, (i, j, dice, T) in enumerate(zip(I, J, K, sched)):
# store current position
# we will need to restore it if walk is not successful
curr = pos[i:].copy()
# one step is to be taken using previous aminoacid as reference
back = tuple(pos[i] - pos[i-1])
# random walk
wdir = dirs[back][j] - back
pos[i:] += wdir
# new energy of the system
E1 = total_energy(pos, s, comb)
# Delta E: change of energy will determine the probability
# of accepting this step
dE = E1 - E0
# Simulated Annealing
prob = np.exp(-dE/T)
accept = prob > dice
if not accept:
pos[i:] = curr
H[it] = 0
else:
E0 = E1
H[it] = 1
E[it] = E0
tra[it] = pos
return tra, H, E, seed, pos
def make_viz(pos, prot_seq, info=None, movie=False, schedule=[], energy_func=[]):
if movie:
return make_movie(pos, schedule, prot_seq, energy_func)
if (len(pos.shape) == 3 and pos.shape[2] == 2):
pos = pos[-1]
qbit_model = False
if pos.shape[1] != 2:
qbit_model = True
q = pos[-1]
def dw(j):
return (1 - q[2*j])*(1 - q[2*j + 1])
def rg(j):
return (1 - q[2*j])*q[2*j + 1]
def lf(j):
return q[2*j]*(1 - q[2*j + 1])
def up(j):
return q[2*j]*q[2*j + 1]
def x(j):
return sum([(rg(k) - lf(k)) for k in range(j)])
def y(j):
return sum([(up(k) - dw(k)) for k in range(j)])
pos = np.array([(x(j), y(j)) for j in range(len(prot_seq))])
n = pos.shape[0]
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, aspect=1)
# Major ticks every 20, minor ticks every 5
major_ticks = np.arange(-n, n, 10)
minor_ticks = np.arange(-n, n, 1)
ax.set_xticks(major_ticks)
ax.set_xticks(minor_ticks, minor=True)
ax.set_yticks(major_ticks)
ax.set_yticks(minor_ticks, minor=True)
ax.grid(which='both')
ax.grid(which='minor', alpha=0.2)
ax.grid(which='major', alpha=0.5)
ax.plot(*pos.T, '-bo', linewidth=5, markersize=20, alpha=0.7)
ax.set_xlim([-n,n])
ax.set_ylim([-n,n])
if info is not None:
ax.text(-n+1, n-1, f"{info}", fontsize=15)
if prot_seq:
for i, (x, y) in enumerate(pos):
ax.text(x, y, prot_seq[i], color='white', verticalalignment='center', horizontalalignment='center', fontweight='bold')
info = ''
if len(schedule) > 0:
info = f'{info}Temperature = {schedule[-1]:.6f}'
if prot_seq:
if qbit_model:
system_ene = energy_func(*q)
else:
system_ene = total_energy(pos, prot_seq)
info = f'{info}\nEnergy = {system_ene:.2f}'
ax.text(-n+1, n-1, info, fontsize=15)
def make_movie(traj, schedule, prot_seq, energy_func=[]):
qbit_model = False
if len(traj.shape) == 2:
qbit_model = True
N, n, di = (len(schedule), len(prot_seq), 2)
trajectory = np.zeros((N, n, di))
q = np.zeros((N, traj.shape[1]))
for i, qs in enumerate(traj):
def dw(j):
return (1 - qs[2*j])*(1 - qs[2*j + 1])
def rg(j):
return (1 - qs[2*j])*qs[2*j + 1]
def lf(j):
return qs[2*j]*(1 - qs[2*j + 1])
def up(j):
return qs[2*j]*qs[2*j + 1]
def x(j):
return sum([(rg(k) - lf(k)) for k in range(j)])
def y(j):
return sum([(up(k) - dw(k)) for k in range(j)])
trajectory[i] = np.array([(x(j), y(j)) for j in range(len(prot_seq))])
q[i] = qs
else:
N, n, di = traj.shape
trajectory = traj
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, aspect=1)
# Major ticks every 20, minor ticks every 5
major_ticks = np.arange(-n, n, 10)
minor_ticks = np.arange(-n, n, 1)
ax.set_xticks(major_ticks)
ax.set_xticks(minor_ticks, minor=True)
ax.set_yticks(major_ticks)
ax.set_yticks(minor_ticks, minor=True)
ax.grid(which='both')
ax.grid(which='minor', alpha=0.2)
ax.grid(which='major', alpha=0.5)
ax.set_xlim([-n, n])
ax.set_ylim([-n, n])
conformation, = ax.plot([], [], '-bo', linewidth=5, markersize=20, alpha=0.7)
temperature = ax.text(-n+1, n-1, '', fontsize=15, verticalalignment='top')
seq_txt = [None] * len(prot_seq)
if prot_seq:
for i, (x, y) in enumerate(trajectory[1]):
seq_txt[i] = ax.text(x, y, prot_seq[i], color='white', verticalalignment='center', horizontalalignment='center', fontweight='bold')
def init():
conformation.set_data([], [])
temperature.set_text('')
return conformation,
def animate(i):
pos = trajectory[i]
conformation.set_data(*pos.T)
info = ''
if len(schedule) > 0:
info = f'{info}Temperature = {schedule[i]:.6f}'
if prot_seq:
if qbit_model:
system_ene = energy_func(*q[i])
else:
system_ene = total_energy(pos, prot_seq)
info = f'{info}\nEnergy = {system_ene:.2f}'
temperature.set_text(info)
if prot_seq:
for i, (x, y) in enumerate(pos):
seq_txt[i].set_x(x)
seq_txt[i].set_y(y)
return conformation,
# call the animator. blit=True means only re-draw the parts that have changed.
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=N, interval=20, blit=True)
anim.save('trajectory.mp4', fps=30, extra_args=['-vcodec', 'libx264'])
plt.show()
########################################
#### Quantum Annealing related code ####
########################################
def u(i, j):
# eqn 22
# Helps to determine number of qbits for overlap
return np.int(((1 + j - i) % 2) * np.ceil(2*np.log2(j - i)))
def prepare_quantum(prot_seq, return_Hs=False):
# length of the sequence
N = len(prot_seq)
# The sequence translated to index
s = [d[a] for a in prot_seq]
# Determine number of qbits needed
# qbits for turns: first qbit position, number of qbits and qbits
ftq = 0
ntq = 2 * (N-1)
# ancilla qbits for overlap
foq = ftq + ntq
noq = sum([sum([u(i,j) for j in range(i+4, N+1)]) for i in range(N-4)])
# ancilla qbits for pairwise interactions
fiq = foq + noq
niq = int((N-3)*(N-2)/2)
Nqbits = ntq + noq + niq
# Symbolic computation of Energy function
q = symbols([f'q{i:04d}' for i in range(Nqbits)])
q = np.array(q)
# 0 0 down
# 0 1 right
# 1 0 left
# 1 1 up
def dw(j):
nonlocal q
return (1 - q[2*j])*(1 - q[2*j + 1])
def rg(j):
nonlocal q
return (1 - q[2*j])*q[2*j + 1]
def lf(j):
nonlocal q
return q[2*j]*(1 - q[2*j + 1])
def up(j):
nonlocal q
return q[2*j]*q[2*j + 1]
def back(j):
nonlocal q
return rg(j)*lf(j+1) + lf(j)*rg(j+1) + up(j)*dw(j+1) + dw(j)*up(j+1)
def x(j):
return sum([(rg(k) - lf(k)) for k in range(j)])
def y(j):
return sum([(up(k) - dw(k)) for k in range(j)])
def g(i, j):
# eqn 16
return (x(i) - x(j))**2 + (y(i) - y(j))**2
def c(i, j):
# eqn 25
return sum([sum([u(m, n) for n in range(m+4, N+1)]) for m in range(i+1)]) - sum([u(i, n) for n in range(j, N+1)]) + foq
def alpha(i,j):
uij = u(i,j)
cij = c(i,j)
return sum([q[cij+k]*2**k for k in range(uij)])
def w(i,j):
nonlocal q
return q[i*((N-3)-i+1) + int((i-1)*i/2) - (i - j) - 3 + fiq]
def J(i, j):
if (j-i) % 2:
return imat[s[i], s[j]]
else:
# only odd pairs can be in contact
return 0
def H_back():
l_back = 10
return sum([back(j) for j in range(N-2)]) * l_back
def H_olap():
# Idea, l_olap needs to big large enough so that its penalization compensates the favoring term in H_inte
# so it would be good it we customize each l_olap according to each Jij
l_olap = 10
return sum([sum([l_olap*((1+i-j)%2)*(2**u(i,j) - g(i,j) - alpha(i, j))**2 for j in range(i+4, N)]) for i in range(N-4)])
def H_inte():
# eqn 32
return sum([sum([w(i,j)*J(i,j)*(2-g(i,j)) for j in range(i+3, N)]) for i in range(N-3)])
# Build energy terms (symbolic expressions)
Hb = (H_back())
Ho = (H_olap()) if noq > 0 else 0
Hi = (H_inte())
energy_expr = Hb + Ho + Hi
if return_Hs:
return prot_seq, q, energy_expr, (Hb, Ho, Hi)
else:
return prot_seq, q, energy_expr
def simulate_quantum(prot_seq, q_sym, energy_expr, sched, jobid=0):
# Callable function to compute energy
energy = lambdify(q_sym, energy_expr)
# length of the sequence
N = len(prot_seq)
# Determine number of qbits needed
# qbits for turns: first qbit position, number of qbits and qbits
ftq = 0
ntq = 2 * (N-1)
# ancilla qbits for overlap
foq = ftq + ntq
noq = sum([sum([u(i,j) for j in range(i+4, N+1)]) for i in range(N-4)])
# ancilla qbits for pairwise interactions
fiq = foq + noq
niq = int((N-3)*(N-2)/2)
Nqbits = ntq + noq + niq
assert Nqbits == len(q_sym), "Error!!!"
Nit = len(sched)
seed = dt.now().microsecond * (jobid + 1)
# Working in parallel, better reseed
np.random.seed(seed)
# initialize qbits vector
q = [0 for i in range(Nqbits)]
q = np.array(q)
# Set initial positions
q[ftq:ftq+ntq] = [0, 1] * (N-1)
q[foq:foq+noq] = 1
q[fiq:fiq+niq] = 0
def dw(j):
nonlocal q
return (1 - q[2*j])*(1 - q[2*j + 1])
def rg(j):
nonlocal q
return (1 - q[2*j])*q[2*j + 1]
def lf(j):
nonlocal q
return q[2*j]*(1 - q[2*j + 1])
def up(j):
nonlocal q
return q[2*j]*q[2*j + 1]
def x(j):
nonlocal q
return sum([(rg(k) - lf(k)) for k in range(j)])
def y(j):
nonlocal q
return sum([(up(k) - dw(k)) for k in range(j)])
def pos():
# translates q vector to position coordinates
# useful for visualization
return np.array([(x(j), y(j)) for j in range(len(prot_seq))])
tra = np.empty((Nit, Nqbits))
# Random numbers for selecting qbit
Q = np.random.randint(3, len(q), size=Nit)
# Throw a dice for proposal acceptance/rejection
K = np.random.uniform(size=Nit)
# History of accepted conformations
H = np.empty((Nit,))
# Energy trace
E = np.empty((Nit,))
# measure current energy
E0 = energy(*q)
# main loop
for it, (i, dice, T) in enumerate(zip(Q, K, sched)):
# for it, (dice, T) in enumerate(zip(K, sched)):
# i = (it % (Nqbits-3)) + 3
# flip selected qbit
q[i] = 0 if q[i] else 1
# new energy of the system
E1 = energy(*q)
# Delta E: change of energy will determine the probability
# of accepting this step
dE = E1 - E0
# Simulated Annealing
prob = np.exp(-dE/T)
accept = prob > dice
if not accept:
# flip back
q[i] = 0 if q[i] else 1
H[it] = 0
else:
E0 = E1
H[it] = 1
E[it] = E0
tra[it] = q
return tra, H, E, seed, q
def show_video():
video = open('trajectory.mp4', 'rb').read()
encoded = base64.b64encode(video)
return HTML(data='''<video alt="test" controls>
<source src="data:video/mp4;base64,{0}" type="video/mp4" />
</video>'''.format(encoded.decode('ascii')))
def viz_short_smpl(smpl, prot_seq, q, energy_func):
qstr_short = [smpl[k] if k in smpl.keys() else 0 for k in q[3:]]
qstr = np.array([[0, 1, 0] + qstr_short])
make_viz(qstr, prot_seq, movie=False, energy_func=energy_func)
def preprocess_expr(H, q):
# Helper function to clean resulting expressions
# some zero coefficients fail to evaluate to 0, rounding is necessary
# for all qbits, qi**n = qi. bc qi in [0,1]
H = expand(H).evalf()
tmp = H
for a in preorder_traversal(tmp):
if isinstance(a, Float):
H = H.subs(a, round(a, 8))
degr = Poly(H).degree()
for qi in q:
for n in reversed(range(2, degr + 1)):
H = H.subs(qi**n, qi)
return H