forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dino-5scale_swin-l_8xb2-12e_coco.py
30 lines (29 loc) · 1.09 KB
/
dino-5scale_swin-l_8xb2-12e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
_base_ = './dino-4scale_r50_8xb2-12e_coco.py'
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth' # noqa
num_levels = 5
model = dict(
num_feature_levels=num_levels,
backbone=dict(
_delete_=True,
type='SwinTransformer',
pretrain_img_size=384,
embed_dims=192,
depths=[2, 2, 18, 2],
num_heads=[6, 12, 24, 48],
window_size=12,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.2,
patch_norm=True,
out_indices=(0, 1, 2, 3),
# Please only add indices that would be used
# in FPN, otherwise some parameter will not be used
with_cp=True,
convert_weights=True,
init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
neck=dict(in_channels=[192, 384, 768, 1536], num_outs=num_levels),
encoder=dict(layer_cfg=dict(self_attn_cfg=dict(num_levels=num_levels))),
decoder=dict(layer_cfg=dict(cross_attn_cfg=dict(num_levels=num_levels))))