-
Notifications
You must be signed in to change notification settings - Fork 1
/
hp.py
135 lines (124 loc) · 4.06 KB
/
hp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import sys
import time
import math
import random
import copy
import json
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import sklearn as sk
import keras
from keras import backend as K
from keras.callbacks import ModelCheckpoint
from keras.models import load_model
from keras.models import Model
from tensorflow.python.client import device_lib
# os.chdir('C:\\Users\\e91597\\Google Drive\\root RMIT\\CRUISE\\DL Flight Delay\\')
# os.chdir('/content/a/My Drive/root RMIT/CRUISE/DL Flight Delay/')
sys.path.append('./')
from Flight_Delay_experiment_5 import experiment
from FAA_DataPointLoader_Image_Only_2 import FAA_DataPointLoader_Image_Only
_fnw = './data/weather_201607_08_pre1.csv'
_fna = './data/Arrivals_TOTAL_withCallsign.csv'
_fnd = './data/Departures_TOTAL_withCallsign.csv'
_fnt = './data/unbreakable_traj_LAX_STAGE.csv'
_fn_dpls = './data/dpls.pickle'
_fn_dpli = './data/dpli_n28_unbrkbl.pickle'
_exp_name = 'minimal_run'
_fn_output = './outputs/flight_delay_output'
_frac_dataset = 1
_frac_val = 0.1
_frac_test = 0.2
_batch_size = 16
_l_cnn_layer = [8,8,8,8]
_l_fc_layer = [100]
_adam_lr = 10**-4
_n_early_stop_patience = 20
_n_epoch = 200
_ReduceLROnPlateau_monitor='val_loss'
_ReduceLROnPlateau_factor=0.1
_ReduceLROnPlateau_patience=10
_ReduceLROnPlateau_mode='min'
_ReduceLROnPlateau_min_delta=0
_ReduceLROnPlateau_cooldown=0
_ReduceLROnPlateau_min_lr=0
_observation_window_duration = 2400
_prediction_horizon = 14400
_c_weatherCondition = 'DROP'
_c_tailNumber = 'DROP'
_c_flightNumber = 'DROP'
_c_airport = 'DROP'
_c_time = 'UNIX'
_c_carrier_code = 'DROP'
_c_icao = 'DROP'
_c_callsign = 'DROP'
_normalization = 'MINMAX01'
_channel_duration=2400
_n_t_channel = 1
_nx=28
_ny=28
_count_filter = 'NONE'
_gauss_sigma = 0
_frac_sample = 0.000001
_verbose = True
while True:
_exp_name = 'final_with_weather'
_batch_size = 15
_adam_lr = 3.48981*10**(-5)
nf = 1
n_cnn_layer = 2
_l_cnn_layer = []
_l_fc_layer = [429]
_n_early_stop_patience = 20
for i in range(n_cnn_layer):
_l_cnn_layer.append(nf)
try:
experiment(
fnw = _fnw,
fna = _fna,
fnd = _fnd,
fnt = _fnt,
fn_dpls = _fn_dpls,
fn_dpli = _fn_dpli,
exp_name = _exp_name,
fn_output = _fn_output,
frac_dataset = _frac_dataset,
frac_val = _frac_val,
frac_test = _frac_test,
batch_size = _batch_size,
l_cnn_layer = _l_cnn_layer,
l_fc_layer = _l_fc_layer,
adam_lr = _adam_lr,
n_early_stop_patience = _n_early_stop_patience,
n_epoch = _n_epoch,
ReduceLROnPlateau_monitor = _ReduceLROnPlateau_monitor,
ReduceLROnPlateau_factor = _ReduceLROnPlateau_factor,
ReduceLROnPlateau_patience = _ReduceLROnPlateau_patience,
ReduceLROnPlateau_mode = _ReduceLROnPlateau_mode,
ReduceLROnPlateau_min_delta = _ReduceLROnPlateau_min_delta,
ReduceLROnPlateau_cooldown = _ReduceLROnPlateau_cooldown,
ReduceLROnPlateau_min_lr = _ReduceLROnPlateau_min_lr,
observation_window_duration = _observation_window_duration,
prediction_horizon = _prediction_horizon,
c_weatherCondition = _c_weatherCondition,
c_tailNumber = _c_tailNumber,
c_flightNumber = _c_flightNumber,
c_airport = _c_airport,
c_time = _c_time,
c_carrier_code = _c_carrier_code,
c_icao = _c_icao,
c_callsign = _c_callsign,
normalization = _normalization,
channel_duration = _channel_duration,
n_t_channel = _n_t_channel,
nx = _nx,
ny = _ny,
count_filter = _count_filter,
gauss_sigma = _gauss_sigma,
frac_sample = _frac_sample,
verbose = _verbose)
except:
print(sys.exc_info()[0])