-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Policy.swift
554 lines (506 loc) · 18.9 KB
/
Policy.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// Swift Standard Prolog Library.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Standardized uninhabited type
//===----------------------------------------------------------------------===//
/// A type that has no values and can't be constructed.
///
/// Use `Never` as the return type of a function
/// that doesn't return normally --- for example,
/// because it runs forever or terminates the program.
///
/// // An infinite loop never returns.
/// func forever() -> Never {
/// while true {
/// print("I will print forever.")
/// }
/// }
///
/// // Calling fatalError(_:file:line:) unconditionally stops the program.
/// func crashAndBurn() -> Never {
/// fatalError("Something very, very bad happened")
/// }
///
/// A function that returns `Never` is called a _nonreturning_ function.
/// Closures, methods, computed properties, and subscripts
/// can also be nonreturning.
///
/// There's no way to create an instance of `Never`;
/// this characteristic makes it an _uninhabited_ type.
/// You can use an uninhabited type like `Never`
/// to represent states in your program
/// that are impossible to reach during execution.
/// Swift's type system uses this information ---
/// for example, to reason about control statements
/// in cases that are known to be unreachable.
///
/// let favoriteNumber: Result<Int, Never> = .success(42)
/// switch favoriteNumber {
/// case .success(let value):
/// print("My favorite number is", value)
/// }
///
/// In the code above,
/// `favoriteNumber` has a failure type of `Never`,
/// indicating that it always succeeds.
/// The switch statement is therefore exhaustive,
/// even though it doesn't contain a `.failure` case,
/// because that case could never be reached.
@frozen
public enum Never {}
extension Never: BitwiseCopyable {}
extension Never: Sendable {}
extension Never: Error {}
extension Never: Equatable, Comparable, Hashable {}
@available(SwiftStdlib 5.5, *)
@_unavailableInEmbedded
extension Never: Identifiable {
@available(SwiftStdlib 5.5, *)
public var id: Never {
switch self {}
}
}
@available(SwiftStdlib 5.9, *)
@_unavailableInEmbedded
extension Never: Encodable {
@available(SwiftStdlib 5.9, *)
public func encode(to encoder: any Encoder) throws {}
}
@available(SwiftStdlib 5.9, *)
@_unavailableInEmbedded
extension Never: Decodable {
@available(SwiftStdlib 5.9, *)
public init(from decoder: any Decoder) throws {
let context = DecodingError.Context(
codingPath: decoder.codingPath,
debugDescription: "Unable to decode an instance of Never.")
throw DecodingError.typeMismatch(Never.self, context)
}
}
//===----------------------------------------------------------------------===//
// Standardized aliases
//===----------------------------------------------------------------------===//
/// The return type of functions that don't explicitly specify a return type,
/// that is, an empty tuple `()`.
///
/// When declaring a function or method, you don't need to specify a return
/// type if no value will be returned. However, the type of a function,
/// method, or closure always includes a return type, which is `Void` if
/// otherwise unspecified.
///
/// Use `Void` or an empty tuple as the return type when declaring a closure,
/// function, or method that doesn't return a value.
///
/// // No return type declared:
/// func logMessage(_ s: String) {
/// print("Message: \(s)")
/// }
///
/// let logger: (String) -> Void = logMessage
/// logger("This is a void function")
/// // Prints "Message: This is a void function"
public typealias Void = ()
//===----------------------------------------------------------------------===//
// Aliases for floating point types
//===----------------------------------------------------------------------===//
// FIXME: it should be the other way round, Float = Float32, Double = Float64,
// but the type checker loses sugar currently, and ends up displaying 'FloatXX'
// in diagnostics.
/// A 32-bit floating point type.
public typealias Float32 = Float
/// A 64-bit floating point type.
public typealias Float64 = Double
//===----------------------------------------------------------------------===//
// Default types for unconstrained literals
//===----------------------------------------------------------------------===//
/// The default type for an otherwise-unconstrained integer literal.
public typealias IntegerLiteralType = Int
/// The default type for an otherwise-unconstrained floating-point literal.
public typealias FloatLiteralType = Double
/// The default type for an otherwise-unconstrained Boolean literal.
///
/// When you create a constant or variable using one of the Boolean literals
/// `true` or `false`, the resulting type is determined by the
/// `BooleanLiteralType` alias. For example:
///
/// let isBool = true
/// print("isBool is a '\(type(of: isBool))'")
/// // Prints "isBool is a 'Bool'"
///
/// The type aliased by `BooleanLiteralType` must conform to the
/// `ExpressibleByBooleanLiteral` protocol.
public typealias BooleanLiteralType = Bool
/// The default type for an otherwise-unconstrained unicode scalar literal.
@_unavailableInEmbedded
public typealias UnicodeScalarType = String
/// The default type for an otherwise-unconstrained Unicode extended
/// grapheme cluster literal.
@_unavailableInEmbedded
public typealias ExtendedGraphemeClusterType = String
/// The default type for an otherwise-unconstrained string literal.
@_unavailableInEmbedded
public typealias StringLiteralType = String
//===----------------------------------------------------------------------===//
// Default types for unconstrained number literals
//===----------------------------------------------------------------------===//
#if !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS)))) && (arch(i386) || arch(x86_64))
public typealias _MaxBuiltinFloatType = Builtin.FPIEEE80
#else
public typealias _MaxBuiltinFloatType = Builtin.FPIEEE64
#endif
//===----------------------------------------------------------------------===//
// Standard protocols
//===----------------------------------------------------------------------===//
#if _runtime(_ObjC)
/// The protocol to which all classes implicitly conform.
///
/// You use `AnyObject` when you need the flexibility of an untyped object or
/// when you use bridged Objective-C methods and properties that return an
/// untyped result. `AnyObject` can be used as the concrete type for an
/// instance of any class, class type, or class-only protocol. For example:
///
/// class FloatRef {
/// let value: Float
/// init(_ value: Float) {
/// self.value = value
/// }
/// }
///
/// let x = FloatRef(2.3)
/// let y: AnyObject = x
/// let z: AnyObject = FloatRef.self
///
/// `AnyObject` can also be used as the concrete type for an instance of a type
/// that bridges to an Objective-C class. Many value types in Swift bridge to
/// Objective-C counterparts, like `String` and `Int`.
///
/// let s: AnyObject = "This is a bridged string." as NSString
/// print(s is NSString)
/// // Prints "true"
///
/// let v: AnyObject = 100 as NSNumber
/// print(type(of: v))
/// // Prints "__NSCFNumber"
///
/// The flexible behavior of the `AnyObject` protocol is similar to
/// Objective-C's `id` type. For this reason, imported Objective-C types
/// frequently use `AnyObject` as the type for properties, method parameters,
/// and return values.
///
/// Casting AnyObject Instances to a Known Type
/// ===========================================
///
/// Objects with a concrete type of `AnyObject` maintain a specific dynamic
/// type and can be cast to that type using one of the type-cast operators
/// (`as`, `as?`, or `as!`).
///
/// This example uses the conditional downcast operator (`as?`) to
/// conditionally cast the `s` constant declared above to an instance of
/// Swift's `String` type.
///
/// if let message = s as? String {
/// print("Successful cast to String: \(message)")
/// }
/// // Prints "Successful cast to String: This is a bridged string."
///
/// If you have prior knowledge that an `AnyObject` instance has a particular
/// type, you can use the unconditional downcast operator (`as!`). Performing
/// an invalid cast triggers a runtime error.
///
/// let message = s as! String
/// print("Successful cast to String: \(message)")
/// // Prints "Successful cast to String: This is a bridged string."
///
/// let badCase = v as! String
/// // Runtime error
///
/// Casting is always safe in the context of a `switch` statement.
///
/// let mixedArray: [AnyObject] = [s, v]
/// for object in mixedArray {
/// switch object {
/// case let x as String:
/// print("'\(x)' is a String")
/// default:
/// print("'\(object)' is not a String")
/// }
/// }
/// // Prints "'This is a bridged string.' is a String"
/// // Prints "'100' is not a String"
///
/// Accessing Objective-C Methods and Properties
/// ============================================
///
/// When you use `AnyObject` as a concrete type, you have at your disposal
/// every `@objc` method and property---that is, methods and properties
/// imported from Objective-C or marked with the `@objc` attribute. Because
/// Swift can't guarantee at compile time that these methods and properties
/// are actually available on an `AnyObject` instance's underlying type, these
/// `@objc` symbols are available as implicitly unwrapped optional methods and
/// properties, respectively.
///
/// This example defines an `IntegerRef` type with an `@objc` method named
/// `getIntegerValue()`.
///
/// class IntegerRef {
/// let value: Int
/// init(_ value: Int) {
/// self.value = value
/// }
///
/// @objc func getIntegerValue() -> Int {
/// return value
/// }
/// }
///
/// func getObject() -> AnyObject {
/// return IntegerRef(100)
/// }
///
/// let obj: AnyObject = getObject()
///
/// In the example, `obj` has a static type of `AnyObject` and a dynamic type
/// of `IntegerRef`. You can use optional chaining to call the `@objc` method
/// `getIntegerValue()` on `obj` safely. If you're sure of the dynamic type of
/// `obj`, you can call `getIntegerValue()` directly.
///
/// let possibleValue = obj.getIntegerValue?()
/// print(possibleValue)
/// // Prints "Optional(100)"
///
/// let certainValue = obj.getIntegerValue()
/// print(certainValue)
/// // Prints "100"
///
/// If the dynamic type of `obj` doesn't implement a `getIntegerValue()`
/// method, the system returns a runtime error when you initialize
/// `certainValue`.
///
/// Alternatively, if you need to test whether `obj.getIntegerValue()` exists,
/// use optional binding before calling the method.
///
/// if let f = obj.getIntegerValue {
/// print("The value of 'obj' is \(f())")
/// } else {
/// print("'obj' does not have a 'getIntegerValue()' method")
/// }
/// // Prints "The value of 'obj' is 100"
public typealias AnyObject = Builtin.AnyObject
#else
/// The protocol to which all classes implicitly conform.
public typealias AnyObject = Builtin.AnyObject
#endif
/// The protocol to which all class types implicitly conform.
///
/// You can use the `AnyClass` protocol as the concrete type for an instance of
/// any class. When you do, all known `@objc` class methods and properties are
/// available as implicitly unwrapped optional methods and properties,
/// respectively. For example:
///
/// class IntegerRef {
/// @objc class func getDefaultValue() -> Int {
/// return 42
/// }
/// }
///
/// func getDefaultValue(_ c: AnyClass) -> Int? {
/// return c.getDefaultValue?()
/// }
///
/// The `getDefaultValue(_:)` function uses optional chaining to safely call
/// the implicitly unwrapped class method on `c`. Calling the function with
/// different class types shows how the `getDefaultValue()` class method is
/// only conditionally available.
///
/// print(getDefaultValue(IntegerRef.self))
/// // Prints "Optional(42)"
///
/// print(getDefaultValue(NSString.self))
/// // Prints "nil"
public typealias AnyClass = AnyObject.Type
//===----------------------------------------------------------------------===//
// Standard pattern matching forms
//===----------------------------------------------------------------------===//
/// Returns a Boolean value indicating whether two arguments match by value
/// equality.
///
/// The pattern-matching operator (`~=`) is used internally in `case`
/// statements for pattern matching. When you match against an `Equatable`
/// value in a `case` statement, this operator is called behind the scenes.
///
/// let weekday = 3
/// let lunch: String
/// switch weekday {
/// case 3:
/// lunch = "Taco Tuesday!"
/// default:
/// lunch = "Pizza again."
/// }
/// // lunch == "Taco Tuesday!"
///
/// In this example, the `case 3` expression uses this pattern-matching
/// operator to test whether `weekday` is equal to the value `3`.
///
/// - Note: In most cases, you should use the equal-to operator (`==`) to test
/// whether two instances are equal. The pattern-matching operator is
/// primarily intended to enable `case` statement pattern matching.
///
/// - Parameters:
/// - lhs: A value to compare.
/// - rhs: Another value to compare.
@_transparent
public func ~= <T: Equatable>(a: T, b: T) -> Bool {
return a == b
}
//===----------------------------------------------------------------------===//
// Standard precedence groups
//===----------------------------------------------------------------------===//
precedencegroup AssignmentPrecedence {
assignment: true
associativity: right
}
precedencegroup FunctionArrowPrecedence {
associativity: right
higherThan: AssignmentPrecedence
}
precedencegroup TernaryPrecedence {
associativity: right
higherThan: FunctionArrowPrecedence
}
precedencegroup DefaultPrecedence {
higherThan: TernaryPrecedence
}
precedencegroup LogicalDisjunctionPrecedence {
associativity: left
higherThan: TernaryPrecedence
}
precedencegroup LogicalConjunctionPrecedence {
associativity: left
higherThan: LogicalDisjunctionPrecedence
}
precedencegroup ComparisonPrecedence {
higherThan: LogicalConjunctionPrecedence
}
precedencegroup NilCoalescingPrecedence {
associativity: right
higherThan: ComparisonPrecedence
}
precedencegroup CastingPrecedence {
higherThan: NilCoalescingPrecedence
}
precedencegroup RangeFormationPrecedence {
higherThan: CastingPrecedence
}
precedencegroup AdditionPrecedence {
associativity: left
higherThan: RangeFormationPrecedence
}
precedencegroup MultiplicationPrecedence {
associativity: left
higherThan: AdditionPrecedence
}
precedencegroup BitwiseShiftPrecedence {
higherThan: MultiplicationPrecedence
}
//===----------------------------------------------------------------------===//
// Standard operators
//===----------------------------------------------------------------------===//
// Standard postfix operators.
postfix operator ++
postfix operator --
postfix operator ...
// Optional<T> unwrapping operator is built into the compiler as a part of
// postfix expression grammar.
//
// postfix operator !
// Standard prefix operators.
prefix operator ++
prefix operator --
prefix operator !
prefix operator ~
prefix operator +
prefix operator -
prefix operator ...
prefix operator ..<
// Standard infix operators.
// "Exponentiative"
infix operator <<: BitwiseShiftPrecedence
infix operator &<<: BitwiseShiftPrecedence
infix operator >>: BitwiseShiftPrecedence
infix operator &>>: BitwiseShiftPrecedence
// "Multiplicative"
infix operator *: MultiplicationPrecedence
infix operator &*: MultiplicationPrecedence
infix operator /: MultiplicationPrecedence
infix operator %: MultiplicationPrecedence
infix operator &: MultiplicationPrecedence
// "Additive"
infix operator +: AdditionPrecedence
infix operator &+: AdditionPrecedence
infix operator -: AdditionPrecedence
infix operator &-: AdditionPrecedence
infix operator |: AdditionPrecedence
infix operator ^: AdditionPrecedence
// FIXME: is this the right precedence level for "..." ?
infix operator ...: RangeFormationPrecedence
infix operator ..<: RangeFormationPrecedence
// The cast operators 'as' and 'is' are hardcoded as if they had the
// following attributes:
// infix operator as: CastingPrecedence
// "Coalescing"
infix operator ??: NilCoalescingPrecedence
// "Comparative"
infix operator <: ComparisonPrecedence
infix operator <=: ComparisonPrecedence
infix operator >: ComparisonPrecedence
infix operator >=: ComparisonPrecedence
infix operator ==: ComparisonPrecedence
infix operator !=: ComparisonPrecedence
infix operator ===: ComparisonPrecedence
infix operator !==: ComparisonPrecedence
// FIXME: ~= will be built into the compiler.
infix operator ~=: ComparisonPrecedence
// "Conjunctive"
infix operator &&: LogicalConjunctionPrecedence
// "Disjunctive"
infix operator ||: LogicalDisjunctionPrecedence
// User-defined ternary operators are not supported. The ? : operator is
// hardcoded as if it had the following attributes:
// operator ternary ? : : TernaryPrecedence
// User-defined assignment operators are not supported. The = operator is
// hardcoded as if it had the following attributes:
// infix operator =: AssignmentPrecedence
// Compound
infix operator *=: AssignmentPrecedence
infix operator &*=: AssignmentPrecedence
infix operator /=: AssignmentPrecedence
infix operator %=: AssignmentPrecedence
infix operator +=: AssignmentPrecedence
infix operator &+=: AssignmentPrecedence
infix operator -=: AssignmentPrecedence
infix operator &-=: AssignmentPrecedence
infix operator <<=: AssignmentPrecedence
infix operator &<<=: AssignmentPrecedence
infix operator >>=: AssignmentPrecedence
infix operator &>>=: AssignmentPrecedence
infix operator &=: AssignmentPrecedence
infix operator ^=: AssignmentPrecedence
infix operator |=: AssignmentPrecedence
// Workaround for <rdar://problem/14011860> SubTLF: Default
// implementations in protocols. Library authors should ensure
// that this operator never needs to be seen by end-users. See
// test/Prototypes/GenericDispatch.swift for a fully documented
// example of how this operator is used, and how its use can be hidden
// from users.
infix operator ~>