-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_script.py
executable file
·311 lines (279 loc) · 11.6 KB
/
utils_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import yaml
import argparse
import joblib
import numpy as np
import os,sys,inspect
import pickle as pkl
import joblib,pprint
import gym
import argparse
import pandas as pd
import torch,random
from gym.spaces import Dict
from rlkit.envs import get_env
import rlkit.torch.pytorch_util as ptu
from rlkit.launchers.launcher_util import setup_logger, set_seed
from rlkit.core import logger
from rlkit.torch.core import np_to_pytorch_batch
from rlkit.torch.networks import FlattenMlp
from rlkit.data_management.offline_buffer import OfflineBuffer,SimpleOfflineBuffer
from rlkit.envs.wrappers import ScaledEnv
from rlkit.launchers import support_config as config
from rlkit.torch.offline_utils import compute_dataset_q
from rlkit.samplers import PathSampler,rollout
from rlkit.samplers.l2s_sampler import rolloutSimMujoco, L2SPathSampler
from rlkit.torch.sac.policies import MakeDeterministic,L2SGaussianPolicy
from rlkit.torch.l2s.utils import normalize_acts,normalize_obs
from rlkit.envs import get_env
from rlkit.torch.l2s.customized_env.hopper import HopperWrapper
from rlkit.torch.l2s.customized_env.walker import WalkerWrapper
from rlkit.torch.l2s.customized_env.halfcheetah import HalfcheetahWrapper
from rlkit.torch.l2s.customized_env.ant import AntWrapper
from rlkit.data_management.traj_l2s_buffer import TrajL2SBuffer
from rlkit.torch.l2s.learn_env_sac import LearnEnv
from rlkit.torch.l2s.dual_env import DualEnv
from rlkit.torch.l2s.learn_env_sac import LearnEnv, LearnEnvForTrain
from rlkit.core import logger, eval_util
import math,copy
from scipy import stats
seed = 9999
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def offline_evaluation(config_file,model_index, gpu):
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu)
wrapper_dict = {'Hopper':HopperWrapper,'Halfcheetah':HalfcheetahWrapper,'Walker':WalkerWrapper,'Ant':AntWrapper}
#load config
with open(config_file, 'r') as spec_file:
spec_string = spec_file.read()
variant = yaml.load(spec_string)
if variant['num_gpu_per_worker'] > 0:
print('\n\nUSING GPU\n\n')
ptu.set_gpu_mode(True, 0)
#load policy
with open('l2s_demos_listing.yaml', 'r') as f:
listings = yaml.load(f.read())
expert_data_test_index = listings[variant['expert_name']]['test_data_index']
expert_base_dir = listings[variant['expert_name']]['base_dir']
test_policy_set = []
for i in expert_data_test_index:
policy_path = os.path.join(expert_base_dir,'test_policy/policy_%d.pkl'%i)
dual_env = joblib.load(policy_path)
test_policy_set.append(dual_env)
print("num of test dual env: ", len(test_policy_set))
print("data load done")
#load dynamic
env_specs = variant['env_specs']
test_env = get_env(env_specs) # test_env
test_env.seed(env_specs['eval_env_seed'])
test_env = wrapper_dict[variant["expert_name"]](test_env)
dynamic_dir = listings[variant['expert_name']]['dynamic_dir']
dynamic_dir = os.path.join(dynamic_dir, '%s.pkl' % model_index)
dynamic_model = joblib.load(dynamic_dir)['exploration_policy']
learned_test_env = LearnEnvForTrain(
test_env,
dynamic_model,
**variant['learned_env_params'],
)
#to gpu
if ptu.gpu_enabled():
for i in test_policy_set:
i.to(ptu.device)
dynamic_model.to(ptu.device)
#algorithm.to(ptu.device)
#begin evaluation
res = []
for i in range(len(test_policy_set)):
learned_eval_sampler = eval_sampler = PathSampler(
learned_test_env,
test_policy_set[i],
variant["num_steps_per_eval"],
variant["max_path_length"],
no_terminal=variant["no_terminal"],
)
learned_test_paths = learned_eval_sampler.obtain_samples()
average_returns = eval_util.get_average_returns(learned_test_paths)
res.append(average_returns)
print(res)
return res
def normalize_data(raw_data):
raw_max = max(raw_data)
raw_min = min(raw_data)
res = []
for i in raw_data:
res.append((i-raw_min)/(raw_max-raw_min))
return res
def generate_data(policy_file_path, save_path, env, traj_nums,max_length, steps_after_done=0, use_sim_mujoco_policy=False,noterminal=False):
"""
generate data for mujoco
"""
print("save_Dir",save_path," policy_dir: ",policy_file_path)
env_name = env
env_wrapper_dict = {'hopper':HopperWrapper,'halfcheetah':HalfcheetahWrapper,'walker':WalkerWrapper,
'ant':AntWrapper,}
env_specs ={"env_name":env,"eval_env_seed":78236,"training_env_seed":24495,"env_kwargs":{}}
env = get_env(env_specs)
env = env_wrapper_dict[env_name](env)
policy = joblib.load(policy_file_path)
policy = MakeDeterministic(policy)
trajs = []
traj_len = []
for i in range(traj_nums):
traj = rolloutSimMujoco(env,policy,max_length,steps_after_done=steps_after_done,no_terminal=noterminal)
trajs.append(traj)
traj_len.append(len(traj['actions']))
joblib.dump(trajs,save_path,compress=3)
print("mean length:", np.mean(traj_len))
if __name__ == '__main__':
# Arguments
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--target', type=int, default=0,help='choose the util')
parser.add_argument('-g', '--gpu', help='gpu id', type=int, default=0)
parser.add_argument('--id', type=int, default=0,help='choose the data of offline evaluation')
parser.add_argument('--no_terminal', help='no terminal', action='store_false',default=True)
parser.add_argument('-d', '--dataset', type=str, default="hopper",help='choose the dataset')
args = parser.parse_args()
target=args.target
env_name = args.dataset
env_dict = {'hopper':'hopper','halfcheetah':'halfcheetah','walker':'walker','ant':'ant'}
if target==0:
final_res = []
config_file = "exp_specs/%s_ope.yaml"%(env_name)
model_list =['sn_300_best_r','sn_300_best_ur']
for i in model_list:
print(i)
res = offline_evaluation(config_file,i,args.gpu)
final_res.append(res)
with open("./l2s_dataset/ope/%s.pkl"%env_name,'wb') as f:
pkl.dump(final_res,f)
elif target==1:
expertname_dict = {"hopper":"Hopper","walker":"Walker","halfcheetah":"Halfcheetah","ant":"Ant"}
with open('l2s_demos_listing.yaml', 'r') as f:
listings = yaml.load(f.read())
expert_data_test_index = listings[expertname_dict[env_name]]['test_data_index']
perform_file = './l2s_dataset/%s/progress.csv' % env_name # Load real performance
data = pd.read_csv(perform_file)
perform_array = []
for i in expert_data_test_index:
perform_array.append(data['AverageReturn'][i])
print(perform_array)
seed = 9999
set_seed(seed)
file_path = "./l2s_dataset/ope/%s.pkl" % (env_name)
raw_data = pkl.load(open(file_path,'rb'))
index_array = copy.deepcopy(perform_array)
index_array = stats.rankdata(index_array)
index_len = len(index_array)
print("---------------------------------------------compute AUC-----------------------------------")
for eval_per in raw_data:
cnt_p=0
cnt_n=0
for i in range(index_len):
for j in range(index_len):
if j==i:
continue
if (index_array[i]-index_array[j])*(eval_per[i]-eval_per[j])>0:
cnt_p+=1
else:
cnt_n+=1
auc = cnt_p / (index_len*(index_len-1))
tau = (cnt_p - cnt_n) / (index_len*(index_len-1))
print(auc,' ',tau)
print("---------------------------------------------compute NDCG-----------------------------------")
norm_perform_array = normalize_data(perform_array)
# NDCG
ratio = [1,2]
for j in ratio:
ndcg = []
top_num = j
for eval_per in raw_data:
concat = [(eval_per[i],norm_perform_array[i]) for i in range(index_len)]
concat.sort(key=lambda obj:obj[0], reverse=True)
new_array = copy.deepcopy(norm_perform_array)
new_array.sort(reverse=True)
dcg = 0.0
max_dcg = 0.0
for i in range(top_num):
tmp = (2**(concat[i][1]) - 1) / math.log(i+2,2)
dcg+=tmp
tmp = (2**(new_array[i])-1)/math.log(i+2,2)
max_dcg +=tmp
ndcg.append(dcg/max_dcg)
print(j,' ',top_num,' ',ndcg)
elif target==2:
length_dict = {'hopper':1000,'halfcheetah':1000,'walker':1000,'ant':1000}
env = env_dict[env_name]
use_sim_mujoco_policy = False
traj_nums = 10 #
max_length= length_dict[env_name]
steps_after_terminal = 0
if args.no_terminal:
base_dir = "./l2s_dataset/%s/"%env_name
steps_after_terminal=0
#train
train_policy = base_dir + "train_policy/"
train_data = base_dir + "train_data/"
files_list = os.listdir(train_policy)
target_list = os.listdir(train_data)
for i in files_list:
policy_path = i
policy_dir = train_policy+policy_path
if "dataset_"+i in target_list:
continue
save_dir = train_data + "dataset_"+i
generate_data(policy_dir,save_dir,env,traj_nums,max_length,steps_after_terminal,use_sim_mujoco_policy,noterminal=args.no_terminal)
#test
test_policy = base_dir + "test_policy/"
test_data = base_dir + "test_data/"
files_list = os.listdir(test_policy)
target_list = os.listdir(test_data)
for i in files_list:
policy_path = i
policy_dir = test_policy+policy_path
if "dataset_"+i in target_list:
continue
save_dir = test_data + "dataset_"+i
generate_data(policy_dir,save_dir,env,traj_nums,max_length,0,use_sim_mujoco_policy=use_sim_mujoco_policy,noterminal=args.no_terminal)
print("generate done")
elif target ==3:
#compute mean and std
env = env_dict[env_name]
base_dir = "./l2s_dataset/%s/"%env_name
cur_obs = None
cur_acts = None
cur_length = 0
#train
train_data = base_dir + "train_data/"
files_list = os.listdir(train_data)
for i in files_list:
if not i.endswith('.pkl'):
continue
data_path = train_data+i
trajs = joblib.load(data_path)
for traj in trajs:
tmp_obs = np.array(traj["observations"])
tmp_acts = np.array(traj["actions"])
cur_length +=len(tmp_obs)
if cur_obs is None:
cur_obs = tmp_obs
cur_acts = tmp_acts
else:
cur_obs = np.concatenate((cur_obs,tmp_obs),axis=0)
cur_acts = np.concatenate((cur_acts,tmp_acts),axis=0)
obs_mean = np.mean(cur_obs,axis=0)
obs_std = np.std(cur_obs,axis=0)
acts_mean = np.mean(cur_acts,axis=0)
acts_std = np.std(cur_acts,axis=0)
print("obs_mean: ")
pprint.pprint(obs_mean)
print('-'*30)
print("obs_std: ")
pprint.pprint(obs_std)
print('-'*30)
print("acts_mean: ")
pprint.pprint(acts_mean)
print('-'*30)
print("acts_std: ")
pprint.pprint(acts_std)
print('-'*30)
#return obs_mean,obs_std,acts_mean,acts_std