diff --git a/conf/zeppelin-site.xml.template b/conf/zeppelin-site.xml.template index abaff304b2d..1465102b62a 100755 --- a/conf/zeppelin-site.xml.template +++ b/conf/zeppelin-site.xml.template @@ -208,7 +208,7 @@ zeppelin.interpreters - org.apache.zeppelin.spark.SparkInterpreter,org.apache.zeppelin.spark.PySparkInterpreter,org.apache.zeppelin.rinterpreter.RRepl,org.apache.zeppelin.rinterpreter.KnitR,org.apache.zeppelin.spark.SparkRInterpreter,org.apache.zeppelin.spark.SparkSqlInterpreter,org.apache.zeppelin.spark.DepInterpreter,org.apache.zeppelin.markdown.Markdown,org.apache.zeppelin.angular.AngularInterpreter,org.apache.zeppelin.shell.ShellInterpreter,org.apache.zeppelin.file.HDFSFileInterpreter,org.apache.zeppelin.flink.FlinkInterpreter,,org.apache.zeppelin.python.PythonInterpreter,org.apache.zeppelin.python.PythonInterpreterPandasSql,org.apache.zeppelin.python.PythonCondaInterpreter,org.apache.zeppelin.python.PythonDockerInterpreter,org.apache.zeppelin.lens.LensInterpreter,org.apache.zeppelin.ignite.IgniteInterpreter,org.apache.zeppelin.ignite.IgniteSqlInterpreter,org.apache.zeppelin.cassandra.CassandraInterpreter,org.apache.zeppelin.geode.GeodeOqlInterpreter,org.apache.zeppelin.jdbc.JDBCInterpreter,org.apache.zeppelin.kylin.KylinInterpreter,org.apache.zeppelin.elasticsearch.ElasticsearchInterpreter,org.apache.zeppelin.scalding.ScaldingInterpreter,org.apache.zeppelin.alluxio.AlluxioInterpreter,org.apache.zeppelin.hbase.HbaseInterpreter,org.apache.zeppelin.livy.LivySparkInterpreter,org.apache.zeppelin.livy.LivyPySparkInterpreter,org.apache.zeppelin.livy.LivyPySpark3Interpreter,org.apache.zeppelin.livy.LivySparkRInterpreter,org.apache.zeppelin.livy.LivySparkSQLInterpreter,org.apache.zeppelin.bigquery.BigQueryInterpreter,org.apache.zeppelin.beam.BeamInterpreter,org.apache.zeppelin.pig.PigInterpreter,org.apache.zeppelin.pig.PigQueryInterpreter,org.apache.zeppelin.scio.ScioInterpreter + org.apache.zeppelin.spark.SparkInterpreter,org.apache.zeppelin.spark.PySparkInterpreter,org.apache.zeppelin.rinterpreter.RRepl,org.apache.zeppelin.rinterpreter.KnitR,org.apache.zeppelin.spark.SparkRInterpreter,org.apache.zeppelin.spark.SparkSqlInterpreter,org.apache.zeppelin.spark.DepInterpreter,org.apache.zeppelin.markdown.Markdown,org.apache.zeppelin.angular.AngularInterpreter,org.apache.zeppelin.shell.ShellInterpreter,org.apache.zeppelin.file.HDFSFileInterpreter,org.apache.zeppelin.flink.FlinkInterpreter,,org.apache.zeppelin.python.PythonInterpreter,org.apache.zeppelin.python.PythonInterpreterPandasSql,org.apache.zeppelin.python.PythonCondaInterpreter,org.apache.zeppelin.python.PythonDockerInterpreter,org.apache.zeppelin.lens.LensInterpreter,org.apache.zeppelin.ignite.IgniteInterpreter,org.apache.zeppelin.ignite.IgniteSqlInterpreter,org.apache.zeppelin.cassandra.CassandraInterpreter,org.apache.zeppelin.geode.GeodeOqlInterpreter,org.apache.zeppelin.jdbc.JDBCInterpreter,org.apache.zeppelin.kylin.KylinInterpreter,org.apache.zeppelin.elasticsearch.ElasticsearchInterpreter,org.apache.zeppelin.scalding.ScaldingInterpreter,org.apache.zeppelin.alluxio.AlluxioInterpreter,org.apache.zeppelin.hbase.HbaseInterpreter,org.apache.zeppelin.livy.LivySparkInterpreter,org.apache.zeppelin.livy.LivyPySparkInterpreter,org.apache.zeppelin.livy.LivyPySpark3Interpreter,org.apache.zeppelin.livy.LivySparkRInterpreter,org.apache.zeppelin.livy.LivySparkSQLInterpreter,org.apache.zeppelin.bigquery.BigQueryInterpreter,org.apache.zeppelin.beam.BeamInterpreter,org.apache.zeppelin.pig.PigInterpreter,org.apache.zeppelin.pig.PigQueryInterpreter,org.apache.zeppelin.scio.ScioInterpreter,org.apache.zeppelin.graph.neo4j.Neo4jCypherInterpreter Comma separated interpreter configurations. First interpreter become a default @@ -319,3 +319,4 @@ + diff --git a/docs/_includes/themes/zeppelin/_navigation.html b/docs/_includes/themes/zeppelin/_navigation.html index b13ef68542d..02d679f8484 100644 --- a/docs/_includes/themes/zeppelin/_navigation.html +++ b/docs/_includes/themes/zeppelin/_navigation.html @@ -66,6 +66,7 @@
  • Lens
  • Livy
  • Markdown
  • +
  • Neo4j
  • Pig
  • Python
  • Postgresql, HAWQ
  • diff --git a/docs/assets/themes/zeppelin/img/docs-img/neo4j-chart-result.png b/docs/assets/themes/zeppelin/img/docs-img/neo4j-chart-result.png new file mode 100644 index 00000000000..d9dd8219191 Binary files /dev/null and b/docs/assets/themes/zeppelin/img/docs-img/neo4j-chart-result.png differ diff --git a/docs/assets/themes/zeppelin/img/docs-img/neo4j-network-result.png b/docs/assets/themes/zeppelin/img/docs-img/neo4j-network-result.png new file mode 100644 index 00000000000..2313d7698a6 Binary files /dev/null and b/docs/assets/themes/zeppelin/img/docs-img/neo4j-network-result.png differ diff --git a/docs/assets/themes/zeppelin/img/docs-img/neo4j-tabular-result.png b/docs/assets/themes/zeppelin/img/docs-img/neo4j-tabular-result.png new file mode 100644 index 00000000000..247740bfdb4 Binary files /dev/null and b/docs/assets/themes/zeppelin/img/docs-img/neo4j-tabular-result.png differ diff --git a/docs/assets/themes/zeppelin/img/docs-img/neo4j-zeppelin-form-select.png b/docs/assets/themes/zeppelin/img/docs-img/neo4j-zeppelin-form-select.png new file mode 100644 index 00000000000..4b3893bb66f Binary files /dev/null and b/docs/assets/themes/zeppelin/img/docs-img/neo4j-zeppelin-form-select.png differ diff --git a/docs/assets/themes/zeppelin/img/docs-img/neo4j-zeppelin-form-text-input.png b/docs/assets/themes/zeppelin/img/docs-img/neo4j-zeppelin-form-text-input.png new file mode 100644 index 00000000000..55976603640 Binary files /dev/null and b/docs/assets/themes/zeppelin/img/docs-img/neo4j-zeppelin-form-text-input.png differ diff --git a/docs/assets/themes/zeppelin/img/docs-img/zeppelin-network-display-customization.png b/docs/assets/themes/zeppelin/img/docs-img/zeppelin-network-display-customization.png new file mode 100644 index 00000000000..e7aab5c7655 Binary files /dev/null and b/docs/assets/themes/zeppelin/img/docs-img/zeppelin-network-display-customization.png differ diff --git a/docs/assets/themes/zeppelin/img/docs-img/zeppelin-switch-chart-network.png b/docs/assets/themes/zeppelin/img/docs-img/zeppelin-switch-chart-network.png new file mode 100644 index 00000000000..c439dbf4c46 Binary files /dev/null and b/docs/assets/themes/zeppelin/img/docs-img/zeppelin-switch-chart-network.png differ diff --git a/docs/assets/themes/zeppelin/img/screenshots/display_network.png b/docs/assets/themes/zeppelin/img/screenshots/display_network.png new file mode 100644 index 00000000000..5804a97f126 Binary files /dev/null and b/docs/assets/themes/zeppelin/img/screenshots/display_network.png differ diff --git a/docs/assets/themes/zeppelin/img/screenshots/display_network1.png b/docs/assets/themes/zeppelin/img/screenshots/display_network1.png new file mode 100644 index 00000000000..50e021fd637 Binary files /dev/null and b/docs/assets/themes/zeppelin/img/screenshots/display_network1.png differ diff --git a/docs/assets/themes/zeppelin/img/screenshots/display_network2.png b/docs/assets/themes/zeppelin/img/screenshots/display_network2.png new file mode 100644 index 00000000000..92e5c869c55 Binary files /dev/null and b/docs/assets/themes/zeppelin/img/screenshots/display_network2.png differ diff --git a/docs/displaysystem/basicdisplaysystem.md b/docs/displaysystem/basicdisplaysystem.md index 7c4243208e4..7762dc1f9ab 100644 --- a/docs/displaysystem/basicdisplaysystem.md +++ b/docs/displaysystem/basicdisplaysystem.md @@ -60,4 +60,98 @@ If table contents start with `%html`, it is interpreted as an HTML. +## Network + +Zeppelin can render a network following this sample json structure: + +```json +{"nodes" : [{"id" : 1}, {"id" : 2}], "edges" : [{"source" : 2, "target" : 1, "id" : 1 }]} +``` + +You can leverage this visualization by using the `%network` directive + + + + + +The network visualization can also leverage the Property Graph with a json structure like this: + +```json +{ + "nodes": [ + { + "id": 1, + "label": "User", + "data": {"fullname": "Andrea Santurbano"} + }, + { + "id": 2, + "label": "User", + "data": {"fullname": "Moon soo Lee"} + } + ], + "edges": [ + { + "source": 2, + "target": 1, + "id": 1, + "label": "HELPS", + "data": { + "project" : "Zeppelin", + "githubUrl": "https://github.com/apache/zeppelin/pull/1582" + } + } + ] +} +``` + + + +## Network + +Zeppelin can render a network following this sample json structure: + +```json +{"nodes" : [{"id" : 1}, {"id" : 2}], "edges" : [{"source" : 2, "target" : 1, "id" : 1 }]} +``` + +You can leverage this visualization by using the `%network` directive + + + + + +The network visualization can also leverage the Property Graph with a json structure like this: + +```json +{ + "nodes": [ + { + "id": 1, + "label": "User", + "data": {"fullname": "Andrea Santurbano"} + }, + { + "id": 2, + "label": "User", + "data": {"fullname": "Moon soo Lee"} + } + ], + "edges": [ + { + "source": 2, + "target": 1, + "id": 1, + "label": "HELPS", + "data": { + "project" : "Zeppelin", + "githubUrl": "https://github.com/apache/zeppelin/pull/1582" + } + } + ] +} +``` + + + > **Note :** Display system is backend independent. diff --git a/docs/interpreter/neo4j.md b/docs/interpreter/neo4j.md new file mode 100644 index 00000000000..adb5dca308b --- /dev/null +++ b/docs/interpreter/neo4j.md @@ -0,0 +1,108 @@ +--- +layout: page +title: "Neo4j Interpreter for Apache Zeppelin" +description: "Neo4j is a highly scalable, native graph database purpose-built to leverage not only data but also its relationships." +group: interpreter +--- + +{% include JB/setup %} + +# Neo4j Interpreter for Apache Zeppelin + +
    + +## Overview +[Neo4j](https://neo4j.com/) is a highly scalable, native graph database purpose-built to leverage not only data but also its relationships. +Neo4j's native graph storage and processing engine deliver constant, real-time performance, helping enterprises build intelligent applications to meet today’s evolving data challenges. + + + + + + + + + + + + +
    NameClassDescription
    %neo4jNeo4jCypherInterpreterEnable the Neo4j intepreter
    + +## Configuration +The Neo4j interpreter can be configured with properties provided by Zeppelin. + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PropertyDefaultDescription
    neo4j.urlbolt://localhost:7687The Neo4j's BOLT url.
    neo4j.userneo4jThe Neo4j user name.
    neo4j.passwordneo4jThe Neo4j user password.
    neo4j.max.concurrency50Max concurrency call to Neo4j server.
    + +## Enabling the Neo4j Interpreter +In a notebook, to enable the **Neo4j** interpreter, click the **Gear** icon and select **neo4j**. + +## Using the Neo4j Interpreter +In a paragraph, use `%neo4j` to select the Neo4j interpreter and then write your cypher query. + +```cypher +MATCH (u:User)-[p:POSTS]->(t:Tweet) RETURN u, p, t; +``` + +The default visualization show the query result as a table. In the tabular result if nodes and relationships are return from the query, they will show together as rows +![Simple cypher query tabular visualization](../assets/themes/zeppelin/img/docs-img/neo4j-tabular-result.png) + +If the query result has almost a node the **Network** button will be enabled so you can switch to the graph visualization +![Network button on chart bar](../assets/themes/zeppelin/img/docs-img/zeppelin-switch-chart-network.png) + +![Simple cypher query network visualization](../assets/themes/zeppelin/img/docs-img/neo4j-network-result.png) + +You can still use the other visualization charts provided by zeppelin +![Simple cypher query Chart visualization](../assets/themes/zeppelin/img/docs-img/neo4j-chart-result.png) + +Leveraging the **settings** button you can customize your graph visualization, a list of nodes will be displayed and by click on each one you can set the property which will be used as node label. +![Simple cypher query network visualization](../assets/themes/zeppelin/img/docs-img/zeppelin-network-display-customization.png) + +### Apply Zeppelin Dynamic Forms +You can leverage [Zeppelin Dynamic Form](../manual/dynamicform.html) inside your queries. You can use both the `text input` and `select form` parameterization features. + +```cypher +match (n:User{screen_name: '${user_name}'})-[r]-(m:Tweet) return n, r, m limit 10 +``` +![Example of query with text input](../assets/themes/zeppelin/img/docs-img/neo4j-zeppelin-form-text-input.png) + +```cypher +match (n:User{screen_name: '${user_name=santand84,santand84|individue|maurofer79}'})-[r]-(m:Tweet) return n, r, m limit 10 +``` +![Example of query with select box](../assets/themes/zeppelin/img/docs-img/neo4j-zeppelin-form-select.png) diff --git a/neo4j/pom.xml b/neo4j/pom.xml new file mode 100644 index 00000000000..c97ecefd580 --- /dev/null +++ b/neo4j/pom.xml @@ -0,0 +1,137 @@ + + + + + 4.0.0 + + + zeppelin + org.apache.zeppelin + 0.8.0-SNAPSHOT + .. + + + org.apache.zeppelin + zeppelin-neo4j + jar + 0.8.0-SNAPSHOT + Zeppelin: Neo4j interpreter + + + 1.0.4 + 3.0.4 + 3.0.4 + + + + + ${project.groupId} + zeppelin-interpreter + ${project.version} + provided + + + + org.neo4j.driver + neo4j-java-driver + ${neo4j.driver.version} + + + + org.slf4j + slf4j-api + + + + org.slf4j + slf4j-log4j12 + + + + junit + junit + test + + + + org.neo4j.test + neo4j-harness + ${neo4j.version} + test + + + + + + + maven-enforcer-plugin + 1.3.1 + + + enforce + none + + + + + + maven-dependency-plugin + 2.8 + + + copy-dependencies + package + + copy-dependencies + + + ${project.build.directory}/../../interpreter/neo4j + false + false + true + runtime + + + + copy-artifact + package + + copy + + + ${project.build.directory}/../../interpreter/neo4j + false + false + true + runtime + + + ${project.groupId} + ${project.artifactId} + ${project.version} + ${project.packaging} + + + + + + + + + + diff --git a/neo4j/src/main/java/org/apache/zeppelin/graph/neo4j/Neo4jCypherInterpreter.java b/neo4j/src/main/java/org/apache/zeppelin/graph/neo4j/Neo4jCypherInterpreter.java new file mode 100644 index 00000000000..efbb42bcb38 --- /dev/null +++ b/neo4j/src/main/java/org/apache/zeppelin/graph/neo4j/Neo4jCypherInterpreter.java @@ -0,0 +1,295 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.zeppelin.graph.neo4j; + +import java.util.ArrayList; +import java.util.HashMap; +import java.util.HashSet; +import java.util.LinkedHashMap; +import java.util.List; +import java.util.Map; +import java.util.Properties; +import java.util.Set; +import java.util.regex.Matcher; +import java.util.regex.Pattern; + +import org.apache.commons.lang.StringUtils; +import org.apache.zeppelin.graph.neo4j.utils.Neo4jConversionUtils; +import org.apache.zeppelin.interpreter.Interpreter; +import org.apache.zeppelin.interpreter.InterpreterContext; +import org.apache.zeppelin.interpreter.InterpreterResult; +import org.apache.zeppelin.interpreter.InterpreterResult.Code; +import org.apache.zeppelin.interpreter.graph.GraphResult; +import org.apache.zeppelin.interpreter.graph.GraphUtils; +import org.apache.zeppelin.interpreter.graph.Relationship.Type; +import org.apache.zeppelin.resource.Resource; +import org.apache.zeppelin.resource.ResourcePool; +import org.apache.zeppelin.scheduler.Scheduler; +import org.apache.zeppelin.scheduler.SchedulerFactory; +import org.neo4j.driver.internal.InternalNode; +import org.neo4j.driver.internal.InternalPath; +import org.neo4j.driver.internal.InternalRelationship; +import org.neo4j.driver.internal.util.Iterables; +import org.neo4j.driver.internal.value.ListValue; +import org.neo4j.driver.internal.value.NodeValue; +import org.neo4j.driver.internal.value.PathValue; +import org.neo4j.driver.internal.value.RelationshipValue; +import org.neo4j.driver.v1.AuthTokens; +import org.neo4j.driver.v1.Config; +import org.neo4j.driver.v1.Driver; +import org.neo4j.driver.v1.GraphDatabase; +import org.neo4j.driver.v1.Record; +import org.neo4j.driver.v1.Session; +import org.neo4j.driver.v1.StatementResult; +import org.neo4j.driver.v1.types.Node; +import org.neo4j.driver.v1.types.Relationship; +import org.slf4j.Logger; +import org.slf4j.LoggerFactory; + +/** + * Neo4j interpreter for Zeppelin. + */ +public class Neo4jCypherInterpreter extends Interpreter { + static final Logger LOGGER = LoggerFactory.getLogger(Neo4jCypherInterpreter.class); + + public static final String NEO4J_SERVER_URL = "neo4j.url"; + public static final String NEO4J_SERVER_USER = "neo4j.user"; + public static final String NEO4J_SERVER_PASSWORD = "neo4j.password"; + public static final String NEO4J_MAX_CONCURRENCY = "neo4j.max.concurrency"; + + private static final String TABLE = "%table"; + private static final String NEW_LINE = "\n"; + private static final String TAB = "\t"; + + private static final Pattern PROPERTY_PATTERN = Pattern.compile("\\{\\w+\\}"); + private static final String REPLACE_CURLY_BRACKETS = "\\{|\\}"; + + private Driver driver = null; + + private Map labels; + + private Set types; + + public Neo4jCypherInterpreter(Properties properties) { + super(properties); + } + + private Driver getDriver() { + if (driver == null) { + Config config = Config.build().withEncryptionLevel(Config.EncryptionLevel.NONE).toConfig(); + driver = GraphDatabase.driver(getProperty(NEO4J_SERVER_URL), + AuthTokens.basic(getProperty(NEO4J_SERVER_USER), + getProperty(NEO4J_SERVER_PASSWORD)), config); + } + return driver; + } + + @Override + public void open() { + getDriver(); + } + + @Override + public void close() { + getDriver().close(); + } + + public Map getLabels(boolean refresh) { + if (labels == null || refresh) { + Map old = labels == null ? + new LinkedHashMap() : new LinkedHashMap<>(labels); + labels = new LinkedHashMap<>(); + try (Session session = getDriver().session()) { + StatementResult result = session.run("CALL db.labels()"); + Set colors = new HashSet<>(); + while (result.hasNext()) { + Record record = result.next(); + String label = record.get("label").asString(); + String color = old.get(label); + while (color == null || colors.contains(color)) { + color = GraphUtils.getRandomColor(); + } + colors.add(color); + labels.put(label, color); + } + } + } + return labels; + } + + private Set getTypes(boolean refresh) { + if (types == null || refresh) { + types = new HashSet<>(); + try (Session session = getDriver().session()) { + StatementResult result = session.run("CALL db.relationshipTypes()"); + while (result.hasNext()) { + Record record = result.next(); + types.add(record.get("relationshipType").asString()); + } + } + } + return types; + } + + private void setResultValue(Object value, Set nodes, Set relationships, + List line) { + if (value instanceof NodeValue + || value instanceof InternalNode) { + NodeValue nodeVal = value instanceof NodeValue ? + (NodeValue) value : (NodeValue) ((InternalNode) value).asValue(); + nodes.add(nodeVal.asNode()); + } else if (value instanceof RelationshipValue + || value instanceof InternalRelationship) { + RelationshipValue relVal = value instanceof RelationshipValue ? + (RelationshipValue) value : (RelationshipValue) ((InternalRelationship) value).asValue(); + relationships.add(relVal.asRelationship()); + } else if (value instanceof PathValue + || value instanceof InternalPath) { + PathValue pathVal = value instanceof PathValue ? + (PathValue) value : (PathValue) ((InternalPath) value).asValue(); + nodes.addAll(Iterables.asList(pathVal.asPath().nodes())); + relationships.addAll(Iterables.asList(pathVal.asPath().relationships())); + } else if (value instanceof ListValue) { + ListValue listValues = (ListValue) value; + List listObject = listValues.asList(); + for (Object val : listObject) { + setResultValue(val, nodes, relationships, line); + } + } else { + line.add(String.valueOf(value)); + } + } + + @Override + public InterpreterResult interpret(String cypherQuery, InterpreterContext interpreterContext) { + logger.info("Opening session"); + if (StringUtils.isEmpty(cypherQuery)) { + return new InterpreterResult(Code.ERROR, "Cypher query is Empty"); + } + try (Session session = getDriver().session()){ + StatementResult result = execute(session, cypherQuery, interpreterContext); + Set cols = new HashSet<>(); + List> lines = new ArrayList<>(); + Set nodes = new HashSet<>(); + Set relationships = new HashSet<>(); + while (result.hasNext()) { + Record record = result.next(); + if (cols.isEmpty()) { + cols.addAll(record.keys()); + } + List line = new ArrayList<>(); + for (String col : cols) { + Object value = record.get(col); + setResultValue(value, nodes, relationships, line); + } + if (!line.isEmpty()) { + lines.add(line); + } + } + if (!nodes.isEmpty()) { + return renderGraph(nodes, relationships); + } else { + return renderTable(cols, lines); + } + } catch (Exception e) { + logger.error("Exception while interpreting cypher query", e); + return new InterpreterResult(Code.ERROR, e.getMessage()); + } + } + + private StatementResult execute(Session session, String cypherQuery, + InterpreterContext interpreterContext) { + Matcher matcher = PROPERTY_PATTERN.matcher(cypherQuery); + Map params = new HashMap<>(); + ResourcePool resourcePool = interpreterContext.getResourcePool(); + while (matcher.find()) { + String key = matcher.group().replaceAll(REPLACE_CURLY_BRACKETS, StringUtils.EMPTY); + Resource resource = resourcePool.get(key); + if (resource != null) { + params.put(key, resource.get()); + } + } + logger.info("Executing cypher query {} with params {}", cypherQuery, params); + return params.isEmpty() ? session.run(cypherQuery) : session.run(cypherQuery, params); + } + + private InterpreterResult renderTable(Set cols, List> lines) { + logger.info("Executing renderTable method"); + StringBuilder msg = new StringBuilder(TABLE); + msg.append(NEW_LINE); + msg.append(StringUtils.join(cols, TAB)); + msg.append(NEW_LINE); + for (List line : lines) { + msg.append(StringUtils.join(line, TAB)); + msg.append(NEW_LINE); + } + return new InterpreterResult(Code.SUCCESS, msg.toString()); + } + + private InterpreterResult renderGraph(Set nodes, + Set relationships) { + logger.info("Executing renderGraph method"); + List nodesList = new ArrayList<>(); + List relsList = new ArrayList<>(); + Map relCount = new HashMap<>(); + for (Relationship rel : relationships) { + Type type = null; + String keyStartEnd = String.format("%s-%s", rel.startNodeId(), rel.endNodeId()); + String keyEndStart = String.format("%s-%s", rel.endNodeId(), rel.startNodeId()); + if (!relCount.containsKey(keyStartEnd) && !relCount.containsKey(keyEndStart)) { + type = Type.arrow; + } else { + type = Type.curvedArrow; + } + if (!relCount.containsKey(keyStartEnd)) { + relCount.put(keyStartEnd, 0); + } + Integer count = relCount.get(keyStartEnd); + relCount.put(keyStartEnd, ++count); + relsList.add(Neo4jConversionUtils.toZeppelinRelationship(rel, type, count)); + } + Map labels = getLabels(true); + for (Node node : nodes) { + nodesList.add(Neo4jConversionUtils.toZeppelinNode(node, labels)); + } + return new GraphResult(Code.SUCCESS, + new GraphResult.Graph(nodesList, relsList, labels, getTypes(true))); + } + + @Override + public Scheduler getScheduler() { + return SchedulerFactory.singleton() + .createOrGetParallelScheduler(Neo4jCypherInterpreter.class.getName() + this.hashCode(), + Integer.parseInt(getProperty(NEO4J_MAX_CONCURRENCY))); + } + + @Override + public int getProgress(InterpreterContext context) { + return 0; + } + + @Override + public FormType getFormType() { + return FormType.SIMPLE; + } + + @Override + public void cancel(InterpreterContext context) { + } + +} diff --git a/neo4j/src/main/java/org/apache/zeppelin/graph/neo4j/utils/Neo4jConversionUtils.java b/neo4j/src/main/java/org/apache/zeppelin/graph/neo4j/utils/Neo4jConversionUtils.java new file mode 100644 index 00000000000..ac4bebfb45d --- /dev/null +++ b/neo4j/src/main/java/org/apache/zeppelin/graph/neo4j/utils/Neo4jConversionUtils.java @@ -0,0 +1,55 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.zeppelin.graph.neo4j.utils; + +import java.util.LinkedHashSet; +import java.util.Map; +import java.util.Set; + +import org.apache.zeppelin.interpreter.graph.Relationship.Type; +import org.neo4j.driver.v1.types.Node; +import org.neo4j.driver.v1.types.Relationship; + +/** + * Neo4jConversionUtils + */ +public class Neo4jConversionUtils { + private Neo4jConversionUtils() {} + + public static org.apache.zeppelin.interpreter.graph.Node toZeppelinNode(Node n, + Map graphLabels) { + Set labels = new LinkedHashSet<>(); + String firstLabel = null; + for (String label : n.labels()) { + if (firstLabel == null) { + firstLabel = label; + } + labels.add(label); + } + String color = graphLabels.get(firstLabel); + return new org.apache.zeppelin.interpreter.graph.Node(n.id(), n.asMap(), + labels, color); + } + + public static org.apache.zeppelin.interpreter.graph.Relationship + toZeppelinRelationship(Relationship r, Type type, int count) { + return new org.apache.zeppelin.interpreter.graph.Relationship(r.id(), r.asMap(), + r.startNodeId(), r.endNodeId(), r.type(), type, count); + } + +} diff --git a/neo4j/src/main/resources/interpreter-setting.json b/neo4j/src/main/resources/interpreter-setting.json new file mode 100644 index 00000000000..991781710b9 --- /dev/null +++ b/neo4j/src/main/resources/interpreter-setting.json @@ -0,0 +1,37 @@ +[ + { + "group": "neo4j", + "name": "neo4j", + "className": "org.apache.zeppelin.graph.neo4j.Neo4jCypherInterpreter", + "properties": { + "neo4j.url": { + "envName": null, + "propertyName": "neo4j.url", + "defaultValue": "bolt://localhost:7687", + "description": "The Neo4j's BOLT url." + }, + "neo4j.user": { + "envName": null, + "propertyName": "neo4j.user", + "defaultValue": "neo4j", + "description": "The Neo4j user name." + }, + "neo4j.password": { + "envName": null, + "propertyName": "neo4j.password", + "defaultValue": "neo4j", + "description": "The Neo4j user password." + }, + "neo4j.max.concurrency": { + "envName": null, + "propertyName": "neo4j.max.concurrency", + "defaultValue": "50", + "description": "Max concurrency call from Zeppelin to Neo4j server." + } + }, + "editor": { + "language": "cypher", + "editOnDblClick": false + } + } +] diff --git a/neo4j/src/test/java/org/apache/zeppelin/graph/neo4j/Neo4jCypherInterpreterTest.java b/neo4j/src/test/java/org/apache/zeppelin/graph/neo4j/Neo4jCypherInterpreterTest.java new file mode 100644 index 00000000000..1b51ad7d73a --- /dev/null +++ b/neo4j/src/test/java/org/apache/zeppelin/graph/neo4j/Neo4jCypherInterpreterTest.java @@ -0,0 +1,144 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.zeppelin.graph.neo4j; + +import static org.junit.Assert.assertEquals; + +import java.util.HashMap; +import java.util.LinkedList; +import java.util.Properties; + +import org.apache.zeppelin.display.AngularObjectRegistry; +import org.apache.zeppelin.display.GUI; +import org.apache.zeppelin.interpreter.InterpreterContext; +import org.apache.zeppelin.interpreter.InterpreterContextRunner; +import org.apache.zeppelin.interpreter.InterpreterGroup; +import org.apache.zeppelin.interpreter.InterpreterOutput; +import org.apache.zeppelin.interpreter.InterpreterResult; +import org.apache.zeppelin.interpreter.InterpreterResult.Code; +import org.apache.zeppelin.interpreter.graph.GraphResult; +import org.apache.zeppelin.resource.LocalResourcePool; +import org.apache.zeppelin.user.AuthenticationInfo; +import org.junit.After; +import org.junit.AfterClass; +import org.junit.Before; +import org.junit.BeforeClass; +import org.junit.FixMethodOrder; +import org.junit.Test; +import org.junit.runners.MethodSorters; +import org.neo4j.harness.ServerControls; +import org.neo4j.harness.TestServerBuilders; + +import com.google.gson.Gson; + +@FixMethodOrder(MethodSorters.NAME_ASCENDING) +public class Neo4jCypherInterpreterTest { + + private Neo4jCypherInterpreter interpreter; + + private InterpreterContext context; + + private static ServerControls server; + + private static final Gson gson = new Gson(); + + private static final String LABEL_PERSON = "Person"; + private static final String REL_KNOWS = "KNOWS"; + + private static final String CYPHER_FOREACH = "FOREACH (x in range(1,1000) | CREATE (:%s{name: \"name\" + x, age: %s}))"; + private static final String CHPHER_UNWIND = "UNWIND range(1,1000) as x " + + "MATCH (n), (m) WHERE id(n) = x AND id(m) = toInt(rand() * 1000) " + + "CREATE (n)-[:%s]->(m)"; + + + private static final String EXPECTED_TABLE = "name\tage\n\"name1\"\t1\n"; + + @BeforeClass + public static void setUpNeo4jServer() throws Exception { + server = TestServerBuilders.newInProcessBuilder() + .withConfig("dbms.security.auth_enabled","false") + .withFixture(String.format(CYPHER_FOREACH, LABEL_PERSON, "x % 10")) + .withFixture(String.format(CHPHER_UNWIND, REL_KNOWS)) + .newServer(); + } + + @AfterClass + public static void tearDownNeo4jServer() throws Exception { + server.close(); + } + + @Before + public void setUpZeppelin() { + Properties p = new Properties(); + p.setProperty(Neo4jCypherInterpreter.NEO4J_SERVER_URL, server.boltURI().toString()); + interpreter = new Neo4jCypherInterpreter(p); + context = new InterpreterContext("note", "id", null, "title", "text", + new AuthenticationInfo(), + new HashMap(), + new GUI(), + new AngularObjectRegistry(new InterpreterGroup().getId(), null), + new LocalResourcePool("id"), + new LinkedList(), + new InterpreterOutput(null)); + } + + @After + public void tearDownZeppelin() throws Exception { + interpreter.close(); + } + + @Test + public void testRenderTable() { + interpreter.open(); + InterpreterResult result = interpreter.interpret("MATCH (n:Person{name: 'name1'}) RETURN n.name AS name, n.age AS age", context); + assertEquals(EXPECTED_TABLE, result.toString().replace("%table ", "")); + assertEquals(Code.SUCCESS, result.code()); + } + + @Test + public void testRenderNetwork() { + interpreter.open(); + InterpreterResult result = interpreter.interpret("MATCH (n)-[r:KNOWS]-(m) RETURN n, r, m LIMIT 1", context); + GraphResult.Graph graph = gson.fromJson(result.toString().replace("%network ", ""), GraphResult.Graph.class); + assertEquals(2, graph.getNodes().size()); + assertEquals(true, graph.getNodes().iterator().next().getLabel().equals(LABEL_PERSON)); + assertEquals(1, graph.getEdges().size()); + assertEquals(true, graph.getEdges().iterator().next().getLabel().equals(REL_KNOWS)); + assertEquals(1, graph.getLabels().size()); + assertEquals(1, graph.getTypes().size()); + assertEquals(true, graph.getLabels().containsKey(LABEL_PERSON)); + assertEquals(REL_KNOWS, graph.getTypes().iterator().next()); + assertEquals(Code.SUCCESS, result.code()); + } + + @Test + public void testFallingQuery() { + interpreter.open(); + final String ERROR_MSG_EMPTY = "%text Cypher query is Empty"; + InterpreterResult result = interpreter.interpret("", context); + assertEquals(Code.ERROR, result.code()); + assertEquals(ERROR_MSG_EMPTY, result.toString()); + + result = interpreter.interpret(null, context); + assertEquals(Code.ERROR, result.code()); + assertEquals(ERROR_MSG_EMPTY, result.toString()); + + result = interpreter.interpret("MATCH (n:Person{name: }) RETURN n.name AS name, n.age AS age", context); + assertEquals(Code.ERROR, result.code()); + } + +} diff --git a/neo4j/src/test/java/org/apache/zeppelin/graph/utils/GraphUtilsTest.java b/neo4j/src/test/java/org/apache/zeppelin/graph/utils/GraphUtilsTest.java new file mode 100644 index 00000000000..edf591af9ef --- /dev/null +++ b/neo4j/src/test/java/org/apache/zeppelin/graph/utils/GraphUtilsTest.java @@ -0,0 +1,41 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.zeppelin.graph.utils; + +import static org.junit.Assert.assertEquals; + +import java.util.regex.Pattern; + +import org.apache.zeppelin.interpreter.graph.GraphUtils; +import org.junit.FixMethodOrder; +import org.junit.Test; +import org.junit.runners.MethodSorters; +/** + * + * @author a.santurbano + * + */ +@FixMethodOrder(MethodSorters.NAME_ASCENDING) +public class GraphUtilsTest { + + private static final Pattern HEX_PATTERN = Pattern.compile("^#([A-F0-9]{6}|[A-F0-9]{3})$"); + + @Test + public void testGetRandomColor() { + assertEquals(true, HEX_PATTERN.matcher(GraphUtils.getRandomColor()).matches()); + } +} diff --git a/notebook/2BYEZ5EVK/note.json b/notebook/2BYEZ5EVK/note.json index 83a79135f7e..7867c0d9042 100644 --- a/notebook/2BYEZ5EVK/note.json +++ b/notebook/2BYEZ5EVK/note.json @@ -784,104 +784,4 @@ "msg": [ { "type": "HTML", - "data": "\u003cp\u003e\u003cimg src\u003d\"\u003d\u003d\" alt\u003d\"plot of chunk unnamed-chunk-1\" width\u003d\"400px\" /\u003e\u003c/p\u003e" - } - ] - }, - "dateCreated": "Sep 27, 2016 6:44:04 AM", - "dateStarted": "Sep 28, 2016 1:52:10 PM", - "dateFinished": "Sep 28, 2016 1:52:10 PM", - "status": "FINISHED", - "progressUpdateIntervalMs": 500 - }, - { - "text": "%md\n\n**NOTE** To install `scatterplot3d` on Ubuntu use:\n\n```sh\nsudo apt-get install r-cran-scatterplot3d\n```\n\n", - "dateUpdated": "Sep 28, 2016 1:54:37 PM", - "config": { - "colWidth": 6.0, - "enabled": true, - "editorMode": "ace/mode/markdown", - "editorHide": true, - "results": [ - { - "graph": { - "mode": "table", - "height": 300.0, - "optionOpen": false, - "keys": [], - "values": [], - "groups": [], - "scatter": {}, - "map": { - "baseMapType": "Streets", - "isOnline": true, - "pinCols": [] - } - } - } - ] - }, - "settings": { - "params": {}, - "forms": {} - }, - "apps": [], - "jobName": "paragraph_1475091302527_1223653372", - "id": "20160928-133502_1743267136", - "results": { - "code": "SUCCESS", - "msg": [ - { - "type": "HTML", - "data": "\u003cp\u003e\u003cstrong\u003eNOTE\u003c/strong\u003e To install \u003ccode\u003escatterplot3d\u003c/code\u003e on Ubuntu use:\u003c/p\u003e\n\u003cpre\u003e\u003ccode class\u003d\"sh\"\u003esudo apt-get install r-cran-scatterplot3d\n\u003c/code\u003e\u003c/pre\u003e\n" - } - ] - }, - "dateCreated": "Sep 28, 2016 1:35:02 AM", - "dateStarted": "Sep 28, 2016 1:54:32 PM", - "dateFinished": "Sep 28, 2016 1:54:33 PM", - "status": "FINISHED", - "progressUpdateIntervalMs": 500 - }, - { - "text": "%md\n", - "dateUpdated": "Sep 28, 2016 1:54:32 PM", - "config": {}, - "settings": { - "params": {}, - "forms": {} - }, - "apps": [], - "jobName": "paragraph_1475092472681_-955530461", - "id": "20160928-135432_2099340527", - "dateCreated": "Sep 28, 2016 1:54:32 PM", - "status": "READY", - "progressUpdateIntervalMs": 500 - } - ], - "name": "Zeppelin Tutorial/Using Mahout", - "id": "2BYEZ5EVK", - "angularObjects": { - "2C6WUGPNH:shared_process": [], - "2C4A8RJNB:shared_process": [], - "2C4DTK2ZT:shared_process": [], - "2C6XKJWBR:shared_process": [], - "2C6AHZPMK:shared_process": [], - "2C5SU66WQ:shared_process": [], - "2C6AMJ98Q:shared_process": [], - "2C4AJZK72:shared_process": [], - "2C3STPSD7:shared_process": [], - "2C4FJN9CK:shared_process": [], - "2C3CW6JBY:shared_process": [], - "2C5UPQX6Q:shared_process": [], - "2C5873KN4:shared_process": [], - "2C5719XN4:shared_process": [], - "2C52DE5G3:shared_process": [], - "2C4G28E63:shared_process": [], - "2C6CU96BC:shared_process": [], - "2C49A6WY3:shared_process": [], - "2C3NE73HG:shared_process": [] - }, - "config": {}, - "info": {} -} + "data": "\u003cp\u003e\u003cimg src\u003d\" diff --git a/notebook/2C99MFRM2/note.json b/notebook/2C99MFRM2/note.json new file mode 100644 index 00000000000..4e76e27ba98 --- /dev/null +++ b/notebook/2C99MFRM2/note.json @@ -0,0 +1,648 @@ +{ + "paragraphs": [ + { + "text": "%md\n\n### This notebook explains how to use the [Neo4j](https://neo4j.com/)™ interpreter and the new NETWORK visualization leveraging the Labelled Property Graph Model.\n\n#### What is Neo4j?\n\nNeo4j is a highly scalable native graph database that leverages data relationships as first-class entities, helping enterprises build intelligent applications to meet today’s evolving data challenges.\n\n#### What is the Labelled Property Graph Model?\n\nA [Property Graph](https://github.com/tinkerpop/gremlin/wiki/Defining-a-Property-Graph) is a graph that has these elements:\n\n* a set of vertices\n * each vertex has a unique identifier.\n * each vertex has a set of outgoing edges.\n * each vertex has a set of incoming edges.\n * each vertex has a collection of properties defined by a map from key to value\n* a set of edges\n * each edge has a unique identifier.\n * each edge has an outgoing tail vertex.\n * each edge has an incoming head vertex.\n * each edge has a label that denotes the type of relationship between its two vertices.\n * each edge has a collection of properties defined by a map from key to value.\n\n![Property Graph](https://github.com/tinkerpop/gremlin/raw/master/doc/images/graph-example-1.jpg)\n\nA [Labelled Property Graph](https://neo4j.com/developer/graph-database/#property-graph) is a Property Graph where the nodes can be tagged with **labels** representing their different roles in the graph model\n\n![Labelled Property Graph](http://s3.amazonaws.com/dev.assets.neo4j.com/wp-content/uploads/property_graph_model.png)\n\nThis kind of graph can be easily *flatten* in order to support other visualization formats provided by Zeppelin.\n\nTo getting started you need a *running instance* of Neo4j then all you have to do is write your [Cypher](https://neo4j.com/developer/cypher-query-language/) queries.\n\nUse the mouse wheel to zoom-in/out and show the node and edge labels.", + "user": "anonymous", + "dateUpdated": "Jan 15, 2017 8:05:52 PM", + "config": { + "tableHide": false, + "editorSetting": { + "language": "markdown", + "editOnDblClick": true + }, + "colWidth": 12.0, + "editorMode": "ace/mode/markdown", + "editorHide": true, + "results": {}, + "enabled": true + }, + "settings": { + "params": {}, + "forms": {} + }, + "results": { + "code": "SUCCESS", + "msg": [ + { + "type": "HTML", + "data": "\u003cdiv class\u003d\"markdown-body\"\u003e\n\u003ch3\u003eThis notebook explains how to use the \u003ca href\u003d\"https://neo4j.com/\"\u003eNeo4j\u003c/a\u003e™ interpreter and the new NETWORK visualization leveraging the Labelled Property Graph Model.\u003c/h3\u003e\n\u003ch4\u003eWhat is Neo4j?\u003c/h4\u003e\n\u003cp\u003eNeo4j is a highly scalable native graph database that leverages data relationships as first-class entities, helping enterprises build intelligent applications to meet today’s evolving data challenges.\u003c/p\u003e\n\u003ch4\u003eWhat is the Labelled Property Graph Model?\u003c/h4\u003e\n\u003cp\u003eA \u003ca href\u003d\"https://github.com/tinkerpop/gremlin/wiki/Defining-a-Property-Graph\"\u003eProperty Graph\u003c/a\u003e is a graph that has these elements:\u003c/p\u003e\n\u003cul\u003e\n \u003cli\u003ea set of vertices\n \u003cul\u003e\n \u003cli\u003eeach vertex has a unique identifier.\u003c/li\u003e\n \u003cli\u003eeach vertex has a set of outgoing edges.\u003c/li\u003e\n \u003cli\u003eeach vertex has a set of incoming edges.\u003c/li\u003e\n \u003cli\u003eeach vertex has a collection of properties defined by a map from key to value\u003c/li\u003e\n \u003c/ul\u003e\n \u003c/li\u003e\n \u003cli\u003ea set of edges\n \u003cul\u003e\n \u003cli\u003eeach edge has a unique identifier.\u003c/li\u003e\n \u003cli\u003eeach edge has an outgoing tail vertex.\u003c/li\u003e\n \u003cli\u003eeach edge has an incoming head vertex.\u003c/li\u003e\n \u003cli\u003eeach edge has a label that denotes the type of relationship between its two vertices.\u003c/li\u003e\n \u003cli\u003eeach edge has a collection of properties defined by a map from key to value.\u003c/li\u003e\n \u003c/ul\u003e\n \u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cimg src\u003d\"https://github.com/tinkerpop/gremlin/raw/master/doc/images/graph-example-1.jpg\" alt\u003d\"Property Graph\" /\u003e\u003c/p\u003e\n\u003cp\u003eA \u003ca href\u003d\"https://neo4j.com/developer/graph-database/#property-graph\"\u003eLabelled Property Graph\u003c/a\u003e is a Property Graph where the nodes can be tagged with \u003cstrong\u003elabels\u003c/strong\u003e representing their different roles in the graph model\u003c/p\u003e\n\u003cp\u003e\u003cimg src\u003d\"http://s3.amazonaws.com/dev.assets.neo4j.com/wp-content/uploads/property_graph_model.png\" alt\u003d\"Labelled Property Graph\" /\u003e\u003c/p\u003e\n\u003cp\u003eThis kind of graph can be easily \u003cem\u003eflatten\u003c/em\u003e in order to support other visualization formats provided by Zeppelin.\u003c/p\u003e\n\u003cp\u003eTo getting started you need a \u003cem\u003erunning instance\u003c/em\u003e of Neo4j then all you have to do is write your \u003ca href\u003d\"https://neo4j.com/developer/cypher-query-language/\"\u003eCypher\u003c/a\u003e queries.\u003c/p\u003e\n\u003cp\u003eUse the mouse wheel to zoom-in/out and show the node and edge labels.\u003c/p\u003e\n\u003c/div\u003e" + } + ] + }, + "apps": [], + "jobName": "paragraph_1484489321698_1691467184", + "id": "20170109-185734_1552998102", + "dateCreated": "Jan 15, 2017 3:08:41 PM", + "dateStarted": "Jan 15, 2017 8:05:52 PM", + "dateFinished": "Jan 15, 2017 8:05:52 PM", + "status": "FINISHED", + "progressUpdateIntervalMs": 500 + }, + { + "text": "%md\n### Tutorial\nThis tutorial is based on [Rik Van Bruggen\u0027s Blog](http://blog.bruggen.com/) post [\"The Neo4j Knowledge Graph\"](http://blog.bruggen.com/2016/03/the-neo4j-knowledge-graph.html) which is a great start to understand the power of graph analytics to get insights from data.\nThere are two basic steps in this tutorial:\n\n1. Import the data into Neo4j from a csv file\n2. Query the data via Cypher queries\n\nThe graph model of our imported dataset looks like:", + "user": "anonymous", + "dateUpdated": "Jan 15, 2017 7:50:15 PM", + "config": { + "colWidth": 12.0, + "enabled": true, + "results": {}, + "editorSetting": { + "language": "markdown", + "editOnDblClick": true + }, + "editorMode": "ace/mode/markdown", + "editorHide": true, + "tableHide": false + }, + "settings": { + "params": {}, + "forms": {} + }, + "results": { + "code": "SUCCESS", + "msg": [ + { + "type": "HTML", + "data": "\u003cdiv class\u003d\"markdown-body\"\u003e\n\u003ch3\u003eTutorial\u003c/h3\u003e\n\u003cp\u003eThis tutorial is based on \u003ca href\u003d\"http://blog.bruggen.com/\"\u003eRik Van Bruggen\u0026rsquo;s Blog\u003c/a\u003e post \u003ca href\u003d\"http://blog.bruggen.com/2016/03/the-neo4j-knowledge-graph.html\"\u003e\u0026ldquo;The Neo4j Knowledge Graph\u0026rdquo;\u003c/a\u003e which is a great start to understand the power of graph analytics to get insights from data.\u003cbr/\u003eThere are two basic steps in this tutorial:\u003c/p\u003e\n\u003col\u003e\n \u003cli\u003eImport the data into Neo4j from a csv file\u003c/li\u003e\n \u003cli\u003eQuery the data via Cypher queries\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe graph model of our imported dataset looks like:\u003c/p\u003e\n\u003c/div\u003e" + } + ] + }, + "apps": [], + "jobName": "paragraph_1484489548844_-369527049", + "id": "20170115-151228_289298576", + "dateCreated": "Jan 15, 2017 3:12:28 PM", + "dateStarted": "Jan 15, 2017 6:33:37 PM", + "dateFinished": "Jan 15, 2017 6:33:37 PM", + "status": "FINISHED", + "progressUpdateIntervalMs": 500 + }, + { + "text": "%spark\r\nprint(s\"\"\"\r\n%network {\r\n \"nodes\": [\r\n {\"id\": 1, \"label\": \"Author\"},\r\n {\"id\": 2, \"label\": \"Resource\"},\r\n {\"id\": 3, \"label\": \"Tag\"}\r\n ],\r\n \"edges\": [\r\n\t\t{\"source\": 1, \"target\": 2, \"id\" : 1, \"label\": \"CREATED\"},\r\n\t\t{\"source\": 2, \"target\": 3, \"id\" : 2, \"label\": \"TAGGED_AS\"}\r\n\t]\r\n}\r\n\"\"\")", + "user": "anonymous", + "dateUpdated": "Jan 16, 2017 9:12:54 AM", + "config": { + "colWidth": 12.0, + "enabled": true, + "results": { + "1": { + "graph": { + "mode": "network", + "height": 128.0, + "optionOpen": false, + "setting": { + "network": { + "properties": { + "Author": { + "selected": "label", + "keys": [ + "id", + "label" + ] + }, + "Resource": { + "selected": "label", + "keys": [ + "id", + "label" + ] + }, + "Tag": { + "selected": "label", + "keys": [ + "id", + "label" + ] + } + }, + "d3Graph": { + "forceLayout": { + "timeout": "5000", + "charge": -120.0, + "linkDistance": 80.0 + }, + "zoom": { + "minScale": "1" + } + } + } + }, + "commonSetting": {} + }, + "helium": {} + } + }, + "editorSetting": { + "language": "scala", + "editOnDblClick": false + }, + "editorMode": "ace/mode/scala" + }, + "settings": { + "params": {}, + "forms": {} + }, + "results": { + "code": "SUCCESS", + "msg": [ + { + "type": "TEXT", + "data": "\n" + }, + { + "type": "NETWORK", + "data": "{\n \"nodes\": [\n {\"id\": 1, \"label\": \"Author\"},\n {\"id\": 2, \"label\": \"Resource\"},\n {\"id\": 3, \"label\": \"Tag\"}\n ],\n \"edges\": [\n\t\t{\"source\": 1, \"target\": 2, \"id\" : 1, \"label\": \"CREATED\"},\n\t\t{\"source\": 2, \"target\": 3, \"id\" : 2, \"label\": \"TAGGED_AS\"}\n\t]\n}\n" + } + ] + }, + "apps": [], + "jobName": "paragraph_1484501116117_1953042985", + "id": "20170115-182516_489605271", + "dateCreated": "Jan 15, 2017 6:25:16 PM", + "dateStarted": "Jan 15, 2017 7:23:57 PM", + "dateFinished": "Jan 15, 2017 7:23:58 PM", + "status": "FINISHED", + "progressUpdateIntervalMs": 500 + }, + { + "text": "%neo4j\n//Step 0: Import the data into Neo4j from a csv file\ncreate index on :Resource(name)", + "user": "anonymous", + "dateUpdated": "Jan 15, 2017 3:22:01 PM", + "config": { + "colWidth": 12.0, + "enabled": true, + "results": {}, + "editorSetting": { + "language": "cypher", + "editOnDblClick": false + }, + "editorMode": "ace/mode/cypher", + "tableHide": true + }, + "settings": { + "params": {}, + "forms": {} + }, + "results": { + "code": "SUCCESS", + "msg": [ + { + "type": "TABLE", + "data": "" + } + ] + }, + "apps": [], + "jobName": "paragraph_1484490033680_-60881287", + "id": "20170115-152033_542083475", + "dateCreated": "Jan 15, 2017 3:20:33 PM", + "dateStarted": "Jan 15, 2017 3:21:52 PM", + "dateFinished": "Jan 15, 2017 3:21:52 PM", + "status": "FINISHED", + "progressUpdateIntervalMs": 500 + }, + { + "text": "%neo4j\n//Step 0: mport the data into Neo4j from a csv file\ncreate index on :Resource(comments)", + "user": "anonymous", + "dateUpdated": "Jan 15, 2017 3:22:04 PM", + "config": { + "colWidth": 12.0, + "enabled": true, + "results": {}, + "editorSetting": { + "language": "cypher", + "editOnDblClick": false + }, + "editorMode": "ace/mode/cypher", + "tableHide": true + }, + "settings": { + "params": {}, + "forms": {} + }, + "results": { + "code": "SUCCESS", + "msg": [ + { + "type": "TABLE", + "data": "" + } + ] + }, + "apps": [], + "jobName": "paragraph_1484490093873_-1082112137", + "id": "20170115-152133_1231910179", + "dateCreated": "Jan 15, 2017 3:21:33 PM", + "dateStarted": "Jan 15, 2017 3:21:56 PM", + "dateFinished": "Jan 15, 2017 3:21:56 PM", + "status": "FINISHED", + "progressUpdateIntervalMs": 500 + }, + { + "text": "%neo4j\r\n//Step 1: Import the csv data into Neo4j from a csv file\r\nload csv with headers from \"https://docs.google.com/a/neotechnology.com/spreadsheets/d/1X6DpFZoS01V1crgRED4dRz2UkbiYR8FJMPf9xey9Lwc/export?format\u003dcsv\u0026id\u003d1X6DpFZoS01V1crgRED4dRz2UkbiYR8FJMPf9xey9Lwc\u0026gid\u003d0\" as csv\r\nmerge (r:Resource {name: csv.What, url: csv.Where, comments: csv.Comments})\r\nwith csv\r\nmerge (a:Author {name: csv.Who})\r\nwith csv\r\nmatch (r:Resource {name: csv.What}), (a:Author {name: csv.Who})\r\nmerge (a)-[:CREATED]-\u003e(r)\r\nwith csv,a,r\r\nmerge (a)-[:CREATED]-\u003e(r)\r\nwith csv.What as Resource, csv.Tags as row\r\nunwind row as text\r\nwith Resource, [w in split(text,\", \") | trim(w)] as words\r\nunwind range(0,size(words)-2) as idx\r\nMATCH (r:Resource {name: Resource})\r\nMERGE (t1:Tag {name:words[idx]})\r\nMERGE (t2:Tag {name:words[idx+1]})\r\nMERGE (r)-[:TAGGED_AS]-\u003e(t1)\r\nMERGE (r)-[:TAGGED_AS]-\u003e(t2);", + "user": "anonymous", + "dateUpdated": "Jan 15, 2017 6:34:03 PM", + "config": { + "colWidth": 12.0, + "enabled": true, + "results": {}, + "editorSetting": { + "language": "cypher", + "editOnDblClick": false + }, + "editorMode": "ace/mode/cypher", + "tableHide": true + }, + "settings": { + "params": {}, + "forms": {} + }, + "results": { + "code": "SUCCESS", + "msg": [ + { + "type": "TABLE", + "data": "" + } + ] + }, + "apps": [], + "jobName": "paragraph_1484489491100_483384642", + "id": "20170115-151131_929877784", + "dateCreated": "Jan 15, 2017 3:11:31 PM", + "dateStarted": "Jan 15, 2017 6:34:03 PM", + "dateFinished": "Jan 15, 2017 6:34:05 PM", + "status": "ABORT", + "progressUpdateIntervalMs": 500 + }, + { + "text": "%neo4j\n//Find some Authors, Resources and Tags\nMATCH p \u003d ((a:Author)--(r:Resource)--(t:Tag))\nreturn p\nlimit 25", + "user": "anonymous", + "dateUpdated": "Jan 16, 2017 9:17:13 AM", + "config": { + "colWidth": 12.0, + "enabled": true, + "results": { + "0": { + "graph": { + "mode": "network", + "height": 379.0, + "optionOpen": false + }, + "helium": {} + } + }, + "editorSetting": { + "language": "cypher", + "editOnDblClick": false + }, + "editorMode": "ace/mode/cypher" + }, + "settings": { + "params": {}, + "forms": {} + }, + "results": { + "code": "SUCCESS", + "msg": [ + { + "type": "NETWORK", + "data": "{\"nodes\":[{\"id\":0,\"data\":{\"comments\":\"A WebGL distributed graph visualization library\",\"name\":\"3dg-viz\",\"url\":\"https://github.com/kbastani/3dg-viz\"},\"label\":\"Resource\",\"color\":\"#9DE79F\"},{\"id\":192,\"data\":{\"name\":\"import\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":1,\"data\":{\"comments\":\"Easily import data into Neo4j from a relational database\",\"name\":\"RDBMS2Neo4j\",\"url\":\"https://github.com/johnymontana/RDBMS2Neo4j\"},\"label\":\"Resource\",\"color\":\"#9DE79F\"},{\"id\":3,\"data\":{\"comments\":\"The lazy way to run multi-statement Neo4j Cypher scripts from the web\",\"name\":\"LazyWebCypher\",\"url\":\"https://github.com/johnymontana/LazyWebCypher\"},\"label\":\"Resource\",\"color\":\"#9DE79F\"},{\"id\":262,\"data\":{\"name\":\"big data\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":263,\"data\":{\"name\":\"spark\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":200,\"data\":{\"name\":\"document\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":266,\"data\":{\"name\":\"library\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":281,\"data\":{\"name\":\"classification\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":224,\"data\":{\"name\":\"nlp\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":225,\"data\":{\"name\":\"text\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":100,\"data\":{\"comments\":\"Will Lyon\\u0027s blog\",\"name\":\"Will Lyon\\u0027s blog\",\"url\":\"http://www.lyonwj.com/\"},\"label\":\"Resource\",\"color\":\"#9DE79F\"},{\"id\":306,\"data\":{\"name\":\"usa\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":116,\"data\":{\"comments\":\"Mazerunner extends a Neo4j graph database to run scheduled big data graph compute algorithms at scale with HDFS and Apache Spark.\",\"name\":\"neo4j-mazerunner\",\"url\":\"https://github.com/neo4j-contrib/neo4j-mazerunner\"},\"label\":\"Resource\",\"color\":\"#9DE79F\"},{\"id\":52,\"data\":{\"comments\":\"Graphify is a Neo4j unmanaged extension used for document and text classification using graph-based hierarchical pattern recognition.\",\"name\":\"graphify\",\"url\":\"https://github.com/Graphify/graphify\"},\"label\":\"Resource\",\"color\":\"#9DE79F\"},{\"id\":181,\"data\":{\"name\":\"code\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":182,\"data\":{\"name\":\"visualization\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":183,\"data\":{\"name\":\"webgl\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":120,\"data\":{\"name\":\"Kenny Bastani\"},\"label\":\"Author\",\"color\":\"#17F40D\"},{\"id\":184,\"data\":{\"name\":\"rdbms\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":121,\"data\":{\"name\":\"Will Lyon\"},\"label\":\"Author\",\"color\":\"#17F40D\"},{\"id\":185,\"data\":{\"name\":\"tool\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":186,\"data\":{\"name\":\"integration\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":315,\"data\":{\"name\":\"graph algorithms\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":187,\"data\":{\"name\":\"cypher\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":252,\"data\":{\"name\":\"blog\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":188,\"data\":{\"name\":\"script\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":191,\"data\":{\"name\":\"component\"},\"label\":\"Tag\",\"color\":\"#1B289C\"}],\"edges\":[{\"source\":120,\"target\":0,\"type\":\"arrow\",\"count\":1,\"id\":0,\"data\":{},\"label\":\"CREATED\",\"color\":\"#D3D3D3\"},{\"source\":121,\"target\":1,\"type\":\"arrow\",\"count\":1,\"id\":1,\"data\":{},\"label\":\"CREATED\",\"color\":\"#D3D3D3\"},{\"source\":121,\"target\":3,\"type\":\"arrow\",\"count\":1,\"id\":3,\"data\":{},\"label\":\"CREATED\",\"color\":\"#D3D3D3\"},{\"source\":3,\"target\":181,\"type\":\"arrow\",\"count\":1,\"id\":131,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":3,\"target\":187,\"type\":\"arrow\",\"count\":1,\"id\":132,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":3,\"target\":188,\"type\":\"arrow\",\"count\":1,\"id\":133,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":100,\"target\":252,\"type\":\"arrow\",\"count\":1,\"id\":340,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":100,\"target\":306,\"type\":\"arrow\",\"count\":1,\"id\":471,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":121,\"target\":100,\"type\":\"arrow\",\"count\":1,\"id\":100,\"data\":{},\"label\":\"CREATED\",\"color\":\"#D3D3D3\"},{\"source\":116,\"target\":315,\"type\":\"arrow\",\"count\":1,\"id\":487,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":52,\"target\":281,\"type\":\"arrow\",\"count\":1,\"id\":425,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":116,\"target\":181,\"type\":\"arrow\",\"count\":1,\"id\":366,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":116,\"target\":262,\"type\":\"arrow\",\"count\":1,\"id\":367,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":116,\"target\":263,\"type\":\"arrow\",\"count\":1,\"id\":368,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":52,\"target\":181,\"type\":\"arrow\",\"count\":1,\"id\":241,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":52,\"target\":191,\"type\":\"arrow\",\"count\":1,\"id\":242,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":52,\"target\":224,\"type\":\"arrow\",\"count\":1,\"id\":243,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":120,\"target\":116,\"type\":\"arrow\",\"count\":1,\"id\":116,\"data\":{},\"label\":\"CREATED\",\"color\":\"#D3D3D3\"},{\"source\":120,\"target\":52,\"type\":\"arrow\",\"count\":1,\"id\":52,\"data\":{},\"label\":\"CREATED\",\"color\":\"#D3D3D3\"},{\"source\":52,\"target\":200,\"type\":\"arrow\",\"count\":1,\"id\":244,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":52,\"target\":225,\"type\":\"arrow\",\"count\":1,\"id\":245,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":0,\"target\":266,\"type\":\"arrow\",\"count\":1,\"id\":373,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":1,\"target\":192,\"type\":\"arrow\",\"count\":1,\"id\":374,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":0,\"target\":181,\"type\":\"arrow\",\"count\":1,\"id\":120,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":3,\"target\":185,\"type\":\"arrow\",\"count\":1,\"id\":376,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":0,\"target\":182,\"type\":\"arrow\",\"count\":1,\"id\":121,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":0,\"target\":183,\"type\":\"arrow\",\"count\":1,\"id\":122,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":1,\"target\":181,\"type\":\"arrow\",\"count\":1,\"id\":123,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":1,\"target\":184,\"type\":\"arrow\",\"count\":1,\"id\":124,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":1,\"target\":185,\"type\":\"arrow\",\"count\":1,\"id\":125,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":1,\"target\":186,\"type\":\"arrow\",\"count\":1,\"id\":126,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"}],\"labels\":{\"Resource\":\"#9DE79F\",\"Author\":\"#17F40D\",\"Tag\":\"#1B289C\"},\"types\":[\"CREATED\",\"TAGGED_AS\"]}" + } + ] + }, + "apps": [], + "jobName": "paragraph_1484554427445_-1764437803", + "id": "20170116-091347_2034270437", + "dateCreated": "Jan 16, 2017 9:13:47 AM", + "dateStarted": "Jan 16, 2017 9:13:51 AM", + "dateFinished": "Jan 16, 2017 9:13:54 AM", + "status": "FINISHED", + "progressUpdateIntervalMs": 500 + }, + { + "text": "%neo4j\n//Find some Authors, Resources and Tags connected to Rik or Max\nMATCH (t:Tag)--(r:Resource)--(a:Author)\nwhere a.name contains \"${Name To Find\u003dRik,Rik|Max}\"\nreturn t,r,a", + "user": "anonymous", + "dateUpdated": "Jan 16, 2017 9:16:47 AM", + "config": { + "colWidth": 12.0, + "enabled": true, + "results": { + "0": { + "graph": { + "mode": "network", + "height": 207.0, + "optionOpen": false, + "setting": { + "multiBarChart": {}, + "network": { + "properties": { + "Resource": { + "selected": "name", + "keys": [ + "comments", + "name", + "url", + "id", + "label" + ] + }, + "Tag": { + "selected": "name", + "keys": [ + "name", + "id", + "label" + ] + }, + "Author": { + "selected": "name", + "keys": [ + "name", + "id", + "label" + ] + } + }, + "d3Graph": { + "forceLayout": { + "timeout": 10000.0, + "charge": -120.0, + "linkDistance": 80.0 + }, + "zoom": { + "minScale": "1" + } + } + } + }, + "commonSetting": {}, + "keys": [ + { + "name": "label", + "index": 1.0, + "aggr": "sum" + } + ], + "groups": [], + "values": [ + { + "name": "label", + "index": 1.0, + "aggr": "sum" + } + ] + }, + "helium": {} + } + }, + "editorSetting": { + "language": "cypher", + "editOnDblClick": false + }, + "editorMode": "ace/mode/cypher" + }, + "settings": { + "params": { + "First Name To Find,Rik": "", + "Second Name To Find,Max": "", + "First Name To Find": "Rik", + "Second Name To Find": "Max", + "Name To Find": "Rik" + }, + "forms": { + "Name To Find": { + "name": "Name To Find", + "defaultValue": "Rik", + "options": [ + { + "value": "Rik" + }, + { + "value": "Max" + } + ], + "hidden": false + } + } + }, + "results": { + "code": "SUCCESS", + "msg": [ + { + "type": "NETWORK", + "data": "{\"nodes\":[{\"id\":241,\"data\":{\"name\":\"book\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":243,\"data\":{\"name\":\"english\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":244,\"data\":{\"name\":\"packt\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":250,\"data\":{\"name\":\"podcast\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":74,\"data\":{\"comments\":\"Run blazingly fast queries on complex graph datasets with the power of the Neo4j graph database.\",\"name\":\"Learning Neo4j\",\"url\":\"http://learningneo4j.net\"},\"label\":\"Resource\",\"color\":\"#9DE79F\"},{\"id\":155,\"data\":{\"name\":\"Rik Van Bruggen\"},\"label\":\"Author\",\"color\":\"#17F40D\"},{\"id\":251,\"data\":{\"name\":\"fun\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":252,\"data\":{\"name\":\"blog\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":93,\"data\":{\"comments\":\"Podcast on all things Neo4j\",\"name\":\"Neo4j podcast\",\"url\":\"http://graphistania.com\"},\"label\":\"Resource\",\"color\":\"#9DE79F\"},{\"id\":94,\"data\":{\"comments\":\"Rik Van Bruggen\\u0027s blog\",\"name\":\"Rik Van Bruggen\\u0027s blog\",\"url\":\"http://blog.bruggen.com\"},\"label\":\"Resource\",\"color\":\"#9DE79F\"},{\"id\":302,\"data\":{\"name\":\"audio\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":303,\"data\":{\"name\":\"belgium\"},\"label\":\"Tag\",\"color\":\"#1B289C\"}],\"edges\":[],\"labels\":{\"Resource\":\"#9DE79F\",\"Author\":\"#17F40D\",\"Tag\":\"#1B289C\"},\"types\":[\"CREATED\",\"TAGGED_AS\"]}" + } + ] + }, + "apps": [], + "jobName": "paragraph_1484490205850_296812597", + "id": "20170115-152325_387433852", + "dateCreated": "Jan 15, 2017 3:23:25 PM", + "dateStarted": "Jan 15, 2017 8:05:18 PM", + "dateFinished": "Jan 15, 2017 8:05:18 PM", + "status": "FINISHED", + "progressUpdateIntervalMs": 500 + }, + { + "text": "%md\nWhen your Cypher query return data as a table the Network visualization is automatically excluded\n", + "user": "anonymous", + "dateUpdated": "Jan 15, 2017 6:32:14 PM", + "config": { + "colWidth": 12.0, + "enabled": true, + "results": {}, + "editorSetting": { + "language": "markdown", + "editOnDblClick": true + }, + "editorMode": "ace/mode/markdown", + "editorHide": true, + "tableHide": false + }, + "settings": { + "params": {}, + "forms": {} + }, + "results": { + "code": "SUCCESS", + "msg": [ + { + "type": "HTML", + "data": "\u003cdiv class\u003d\"markdown-body\"\u003e\n\u003cp\u003eWhen your Cypher query return data as a table the Network visualization is automatically excluded\u003c/p\u003e\n\u003c/div\u003e" + } + ] + }, + "apps": [], + "jobName": "paragraph_1484501447412_1083770982", + "id": "20170115-183047_202915023", + "dateCreated": "Jan 15, 2017 6:30:47 PM", + "dateStarted": "Jan 15, 2017 6:32:14 PM", + "dateFinished": "Jan 15, 2017 6:32:15 PM", + "status": "FINISHED", + "progressUpdateIntervalMs": 500 + }, + { + "text": "%neo4j\r\n//find some resources and authors\r\nMATCH (r:Resource)--(a:Author)\r\nwhere a.name contains \"${First Name To Find\u003dRik}\" or a.name contains \"${Second Name To Find\u003dMax}\"\r\nreturn distinct a.name as Author, r.name as Resource, r.url as URL, r.comments as Description\r\norder by Author;", + "user": "anonymous", + "dateUpdated": "Jan 15, 2017 6:34:32 PM", + "config": { + "colWidth": 12.0, + "enabled": true, + "results": { + "0": { + "graph": { + "mode": "pieChart", + "height": 300.0, + "optionOpen": false, + "setting": { + "pieChart": {} + }, + "commonSetting": {}, + "keys": [ + { + "name": "Author", + "index": 2.0, + "aggr": "sum" + } + ], + "groups": [], + "values": [ + { + "name": "Author", + "index": 2.0, + "aggr": "count" + } + ] + }, + "helium": {} + } + }, + "editorSetting": { + "language": "cypher", + "editOnDblClick": false + }, + "editorMode": "ace/mode/cypher" + }, + "settings": { + "params": { + "First Name To Find": "Rik", + "Second Name To Find": "Max" + }, + "forms": { + "Second Name To Find": { + "name": "Second Name To Find", + "defaultValue": "Max", + "hidden": false + }, + "First Name To Find": { + "name": "First Name To Find", + "defaultValue": "Rik", + "hidden": false + } + } + }, + "results": { + "code": "SUCCESS", + "msg": [ + { + "type": "TABLE", + "data": "Description\tResource\tAuthor\tURL\n\"Demo visualization of Neo4j data\"\t\"neovigator\"\t\"Max De Marzi\"\t\"https://github.com/maxdemarzi/neovigator\"\n\"Neo4j POC to Integrate VisualSearch.js and Cypher\"\t\"neo-visual-search\"\t\"Max De Marzi\"\t\"https://github.com/maxdemarzi/neo_visual_search\"\n\"Max De Marzi\u0027s blog\"\t\"Max De Marzi\u0027s blog\"\t\"Max De Marzi\"\t\"http://maxdemarzi.com\"\n\"A thin Ruby wrapper to the Neo4j Rest API.\"\t\"neography\"\t\"Max De Marzi\"\t\"https://github.com/maxdemarzi/neography\"\n\"Rik Van Bruggen\u0027s blog\"\t\"Rik Van Bruggen\u0027s blog\"\t\"Rik Van Bruggen\"\t\"http://blog.bruggen.com\"\n\"Podcast on all things Neo4j\"\t\"Neo4j podcast\"\t\"Rik Van Bruggen\"\t\"http://graphistania.com\"\n\"Run blazingly fast queries on complex graph datasets with the power of the Neo4j graph database.\"\t\"Learning Neo4j\"\t\"Rik Van Bruggen\"\t\"http://learningneo4j.net\"\n" + } + ] + }, + "apps": [], + "jobName": "paragraph_1484500926122_1350835980", + "id": "20170115-182206_1701051593", + "dateCreated": "Jan 15, 2017 6:22:06 PM", + "dateStarted": "Jan 15, 2017 6:30:36 PM", + "dateFinished": "Jan 15, 2017 6:30:36 PM", + "status": "FINISHED", + "progressUpdateIntervalMs": 500 + }, + { + "text": "%neo4j\r\n//find some paths between books and blogs\r\nmatch (t1:Tag {name:\"book\"}), (t2:Tag {name:\"blog\"}),\r\np \u003d allshortestpaths ((t1)-[*]-(t2))\r\nreturn p\r\nlimit 10", + "user": "anonymous", + "dateUpdated": "Jan 16, 2017 9:04:12 AM", + "config": { + "colWidth": 12.0, + "enabled": true, + "results": { + "0": { + "graph": { + "mode": "network", + "height": 300.0, + "optionOpen": false + }, + "helium": {} + } + }, + "editorSetting": { + "language": "cypher", + "editOnDblClick": false + }, + "editorMode": "ace/mode/cypher" + }, + "settings": { + "params": {}, + "forms": {} + }, + "results": { + "code": "SUCCESS", + "msg": [ + { + "type": "NETWORK", + "data": "{\"nodes\":[{\"id\":241,\"data\":{\"name\":\"book\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":74,\"data\":{\"comments\":\"Run blazingly fast queries on complex graph datasets with the power of the Neo4j graph database.\",\"name\":\"Learning Neo4j\",\"url\":\"http://learningneo4j.net\"},\"label\":\"Resource\",\"color\":\"#9DE79F\"},{\"id\":122,\"data\":{\"name\":\"Michael Hunger\"},\"label\":\"Author\",\"color\":\"#17F40D\"},{\"id\":155,\"data\":{\"name\":\"Rik Van Bruggen\"},\"label\":\"Author\",\"color\":\"#17F40D\"},{\"id\":75,\"data\":{\"comments\":\"Eine Graphdatenbank für alle\",\"name\":\"Neo4j 2.0\",\"url\":\"http://neo4j.com/books/neo4j-2-0-eine-graphdatenbank-fur-alle/\"},\"label\":\"Resource\",\"color\":\"#9DE79F\"},{\"id\":252,\"data\":{\"name\":\"blog\"},\"label\":\"Tag\",\"color\":\"#1B289C\"},{\"id\":94,\"data\":{\"comments\":\"Rik Van Bruggen\\u0027s blog\",\"name\":\"Rik Van Bruggen\\u0027s blog\",\"url\":\"http://blog.bruggen.com\"},\"label\":\"Resource\",\"color\":\"#9DE79F\"},{\"id\":95,\"data\":{\"comments\":\"Michael Hunger\\u0027s blog\",\"name\":\"Michael Hunger\\u0027s blog\",\"url\":\"http://jexp.de/blog\"},\"label\":\"Resource\",\"color\":\"#9DE79F\"}],\"edges\":[{\"source\":74,\"target\":241,\"type\":\"arrow\",\"count\":1,\"id\":295,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":75,\"target\":241,\"type\":\"arrow\",\"count\":1,\"id\":297,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":155,\"target\":74,\"type\":\"arrow\",\"count\":1,\"id\":74,\"data\":{},\"label\":\"CREATED\",\"color\":\"#D3D3D3\"},{\"source\":122,\"target\":75,\"type\":\"arrow\",\"count\":1,\"id\":75,\"data\":{},\"label\":\"CREATED\",\"color\":\"#D3D3D3\"},{\"source\":155,\"target\":94,\"type\":\"arrow\",\"count\":1,\"id\":94,\"data\":{},\"label\":\"CREATED\",\"color\":\"#D3D3D3\"},{\"source\":94,\"target\":252,\"type\":\"arrow\",\"count\":1,\"id\":334,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"},{\"source\":122,\"target\":95,\"type\":\"arrow\",\"count\":1,\"id\":95,\"data\":{},\"label\":\"CREATED\",\"color\":\"#D3D3D3\"},{\"source\":95,\"target\":252,\"type\":\"arrow\",\"count\":1,\"id\":335,\"data\":{},\"label\":\"TAGGED_AS\",\"color\":\"#D3D3D3\"}],\"labels\":{\"Resource\":\"#9DE79F\",\"Author\":\"#17F40D\",\"Tag\":\"#1B289C\"},\"types\":[\"CREATED\",\"TAGGED_AS\"]}" + } + ] + }, + "apps": [], + "jobName": "paragraph_1484506516640_1639023821", + "id": "20170115-195516_709966475", + "dateCreated": "Jan 15, 2017 7:55:16 PM", + "dateStarted": "Jan 15, 2017 8:06:11 PM", + "dateFinished": "Jan 15, 2017 8:06:12 PM", + "status": "FINISHED", + "progressUpdateIntervalMs": 500 + }, + { + "user": "anonymous", + "config": {}, + "settings": { + "params": {}, + "forms": {} + }, + "apps": [], + "jobName": "paragraph_1484507139767_925173928", + "id": "20170115-200539_1236670114", + "dateCreated": "Jan 15, 2017 8:05:39 PM", + "status": "READY", + "progressUpdateIntervalMs": 500 + } + ], + "name": "Zeppelin Tutorial/Using Neo4j", + "id": "2C8QUSPXP", + "angularObjects": { + "2C69VZSHH:shared_process": [], + "2C7NPWJN9:shared_process": [], + "2C9CRSNEJ:shared_process": [], + "2C8FBTA2M:shared_process": [], + "2C7J47MSN:shared_process": [], + "2C772Q3UZ:shared_process": [], + "2C5NCX7B4:shared_process": [], + "2C98M48X5:shared_process": [], + "2C93N42FT:shared_process": [], + "2C8WAY6V3:shared_process": [], + "2C8D3NDXW:shared_process": [], + "2C7QW1QE4:shared_process": [], + "2C5S4JN33:shared_process": [], + "2C8GXP4YH:shared_process": [], + "2C5ZE5S93:shared_process": [], + "2C8YZ8XHF:shared_process": [], + "2C8CX1HH2:shared_process": [], + "2C5X2BVCC:shared_process": [], + "2C898P8HW:shared_process": [], + "2C7AC9CD7:shared_process": [] + }, + "config": {}, + "info": {} +} diff --git a/pom.xml b/pom.xml index fdca38177ad..a24ca99ff21 100644 --- a/pom.xml +++ b/pom.xml @@ -75,6 +75,7 @@ bigquery alluxio scio + neo4j zeppelin-web zeppelin-server zeppelin-distribution diff --git a/zeppelin-distribution/src/bin_license/LICENSE b/zeppelin-distribution/src/bin_license/LICENSE index d27f27d44ea..081f994a3cb 100644 --- a/zeppelin-distribution/src/bin_license/LICENSE +++ b/zeppelin-distribution/src/bin_license/LICENSE @@ -214,6 +214,7 @@ The following components are provided under Apache License. (Apache 2.0) Maven Wagon HTTP Shared 1.0 (org.apache.maven.wagon:wagon-http-shared:1.0 - https://mvnrepository.com/artifact/org.apache.maven.wagon/wagon-http-shared/1.0) (Apache 2.0) Commons HTTP Client 3.1 (commons-httpclient:commons-httpclient:3.1 - https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient/3.1) (Apache 2.0) Scalatest 2.2.4 (org.scalatest:scalatest_2.10:2.2.4 - https://github.com/scalatest/scalatest) + (Apache 2.0) Neo4j Java Driver (https://github.com/neo4j/neo4j-java-driver) - https://github.com/neo4j/neo4j-java-driver/blob/1.1/LICENSE.txt (Apache 2.0) frontend-maven-plugin 1.3 (com.github.eirslett:frontend-maven-plugin:1.3 - https://github.com/eirslett/frontend-maven-plugin/blob/frontend-plugins-1.3/LICENSE (Apache 2.0) frontend-plugin-core 1.3 (com.github.eirslett:frontend-plugin-core) - https://github.com/eirslett/frontend-maven-plugin/blob/frontend-plugins-1.3/LICENSE diff --git a/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/InterpreterResult.java b/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/InterpreterResult.java index 5288f6f4ef9..6c7a1ca72aa 100644 --- a/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/InterpreterResult.java +++ b/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/InterpreterResult.java @@ -50,7 +50,8 @@ public static enum Type { TABLE, IMG, SVG, - NULL + NULL, + NETWORK } Code code; diff --git a/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/GraphEntity.java b/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/GraphEntity.java new file mode 100644 index 00000000000..73d1c6f1894 --- /dev/null +++ b/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/GraphEntity.java @@ -0,0 +1,86 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.zeppelin.interpreter.graph; + +import java.util.Map; + +/** + * The base network entity + * + */ +public abstract class GraphEntity { + + private long id; + + /** + * The data of the entity + * + */ + private Map data; + + /** + * The primary type of the entity + */ + private String label; + + private String color; + + public GraphEntity() {} + + public GraphEntity(long id, Map data, String label, + String color) { + super(); + this.setId(id); + this.setData(data); + this.setLabel(label); + this.setColor(color); + } + + public long getId() { + return id; + } + + public void setId(long id) { + this.id = id; + } + + public Map getData() { + return data; + } + + public void setData(Map data) { + this.data = data; + } + + public String getLabel() { + return label; + } + + public void setLabel(String label) { + this.label = label; + } + + public String getColor() { + return color; + } + + public void setColor(String color) { + this.color = color; + } + +} diff --git a/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/GraphResult.java b/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/GraphResult.java new file mode 100644 index 00000000000..29356dc6305 --- /dev/null +++ b/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/GraphResult.java @@ -0,0 +1,106 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.zeppelin.interpreter.graph; + +import java.util.Collection; +import java.util.Map; +import java.util.Set; + +import org.apache.zeppelin.interpreter.InterpreterResult; + +import com.google.gson.Gson; + +/** + * The intepreter result template for Networks + * + */ +public class GraphResult extends InterpreterResult { + + /** + * The Graph structure parsed from the front-end + * + */ + public static class Graph { + private Collection nodes; + + private Collection edges; + + /** + * The node types in the whole graph, and the related colors + * + */ + private Map labels; + + /** + * The relationship types in the whole graph + * + */ + private Set types; + + public Graph() {} + + public Graph(Collection nodes, Collection edges, + Map labels, Set types) { + super(); + this.setNodes(nodes); + this.setEdges(edges); + this.setLabels(labels); + this.setTypes(types); + } + + public Collection getNodes() { + return nodes; + } + + public void setNodes(Collection nodes) { + this.nodes = nodes; + } + + public Collection getEdges() { + return edges; + } + + public void setEdges(Collection edges) { + this.edges = edges; + } + + public Map getLabels() { + return labels; + } + + public void setLabels(Map labels) { + this.labels = labels; + } + + public Set getTypes() { + return types; + } + + public void setTypes(Set types) { + this.types = types; + } + + } + + private static final Gson gson = new Gson(); + + public GraphResult(Code code, Graph graphObject) { + super(code, Type.NETWORK, gson.toJson(graphObject)); + } + +} diff --git a/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/GraphUtils.java b/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/GraphUtils.java new file mode 100644 index 00000000000..59c51619471 --- /dev/null +++ b/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/GraphUtils.java @@ -0,0 +1,38 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.zeppelin.interpreter.graph; + +/** + * An utiliy class for networks + * + */ +public class GraphUtils { + private GraphUtils() {} + + private static final String[] LETTERS = "0123456789ABCDEF".split(""); + + public static String getRandomColor() { + char[] color = new char[7]; + color[0] = '#'; + for (int i = 1; i < color.length; i++) { + color[i] = LETTERS[(int) Math.floor(Math.random() * 16)].charAt(0); + } + return new String(color); + } + +} diff --git a/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/Node.java b/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/Node.java new file mode 100644 index 00000000000..1ad6d9c8970 --- /dev/null +++ b/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/Node.java @@ -0,0 +1,50 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.zeppelin.interpreter.graph; + +import java.util.Map; +import java.util.Set; + +/** + * The Zeppelin Node Entity + * + */ +public class Node extends GraphEntity { + + /** + * The labels (types) attached to a node + */ + private Set labels; + + public Node() {} + + + public Node(long id, Map data, Set labels, + String color) { + super(id, data, labels.iterator().next(), color); + } + + public Set getLabels() { + return labels; + } + + public void setLabels(Set labels) { + this.labels = labels; + } + +} diff --git a/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/Relationship.java b/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/Relationship.java new file mode 100644 index 00000000000..a32bcc3fbc9 --- /dev/null +++ b/zeppelin-interpreter/src/main/java/org/apache/zeppelin/interpreter/graph/Relationship.java @@ -0,0 +1,96 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.zeppelin.interpreter.graph; + +import java.util.Map; + +/** + * The Zeppelin Relationship entity + * + */ +public class Relationship extends GraphEntity { + + private long source; + + private long target; + + private Type type; + + /** + * The number of relations that exists between source and target + * + */ + private int count; + + /** + * The relationship shape type + * + */ + public enum Type{arrow, curvedArrow} + + public static final String COLOR_GREY = "#D3D3D3"; + + public Relationship() {} + + public Relationship(long id, Map data, long source, + long target, String label, Type type, int count) { + super(id, data, label, COLOR_GREY); + this.setSource(source); + this.setTarget(target); + this.setType(type); + this.setCount(count); + } + + public Relationship(long id, Map data, long source, + long target, String label, Type type) { + this(id, data, source, target, label, type, 0); + } + + public long getSource() { + return source; + } + + public void setSource(long startNodeId) { + this.source = startNodeId; + } + + public long getTarget() { + return target; + } + + public void setTarget(long endNodeId) { + this.target = endNodeId; + } + + public Type getType() { + return type; + } + + public void setType(Type type) { + this.type = type; + } + + public int getCount() { + return count; + } + + public void setCount(int count) { + this.count = count; + } + +} diff --git a/zeppelin-web/src/app/notebook/paragraph/paragraph.css b/zeppelin-web/src/app/notebook/paragraph/paragraph.css index 961a5f089ca..51118afd86c 100644 --- a/zeppelin-web/src/app/notebook/paragraph/paragraph.css +++ b/zeppelin-web/src/app/notebook/paragraph/paragraph.css @@ -595,3 +595,7 @@ table.table-striped { .markdown-body h4 { font-size: 16px; } + +.network-badge { + margin: 0.2em; +} \ No newline at end of file diff --git a/zeppelin-web/src/app/notebook/paragraph/result/result-chart-selector.html b/zeppelin-web/src/app/notebook/paragraph/result/result-chart-selector.html index 0d2afb7b530..a46e4d6b62d 100644 --- a/zeppelin-web/src/app/notebook/paragraph/result/result-chart-selector.html +++ b/zeppelin-web/src/app/notebook/paragraph/result/result-chart-selector.html @@ -13,13 +13,14 @@ -->
    -
    +
    @@ -27,7 +28,7 @@
    + +
    + +
    + +
    + +
    \ No newline at end of file diff --git a/zeppelin-web/src/app/tabledata/networkdata.js b/zeppelin-web/src/app/tabledata/networkdata.js new file mode 100644 index 00000000000..5059ed2e72d --- /dev/null +++ b/zeppelin-web/src/app/tabledata/networkdata.js @@ -0,0 +1,135 @@ +/* + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +import TableData from './tabledata'; +import {DatasetType} from './dataset'; + +/** + * Create network data object from paragraph graph type result + */ +export default class NetworkData extends TableData { + constructor(graph) { + super(); + this.graph = graph || {}; + if (this.graph.nodes) { + this.loadParagraphResult({msg: JSON.stringify(graph), type: DatasetType.NETWORK}); + } + }; + + loadParagraphResult(paragraphResult) { + if (!paragraphResult || paragraphResult.type !== DatasetType.NETWORK) { + console.log('Can not load paragraph result'); + return; + } + + this.graph = JSON.parse(paragraphResult.msg.trim() || '{}'); + + if (!this.graph.nodes) { + console.log('Graph result is empty'); + return; + } + + this.setNodesDefaults(); + this.setEdgesDefaults(); + + this.networkNodes = angular.equals({}, this.graph.labels || {}) ? + null : {count: this.graph.nodes.length, labels: this.graph.labels}; + this.networkRelationships = angular.equals([], this.graph.types || []) ? + null : {count: this.graph.edges.length, types: this.graph.types}; + + var columnNames = []; + var rows = []; + var comment = ''; + var entities = this.graph.nodes.concat(this.graph.edges); + var baseColumnNames = [{name: 'id', index: 0, aggr: 'sum'}, + {name: 'label', index: 1, aggr: 'sum'}]; + var internalFieldsToJump = ['count', 'type', 'size', + 'data', 'x', 'y', 'color', + 'labels']; + var baseCols = _.map(baseColumnNames, function(col) { return col.name; }); + var keys = _.map(entities, function(elem) { return Object.keys(elem.data || {}); }); + keys = _.flatten(keys); + keys = _.uniq(keys).filter(function(key) { + return baseCols.indexOf(key) === -1; + }); + var columnNames = baseColumnNames.concat(_.map(keys, function(elem, i) { + return {name: elem, index: i + baseColumnNames.length, aggr: 'sum'}; + })); + for (var i = 0; i < entities.length; i++) { + var entity = entities[i]; + var col = []; + var col2 = []; + entity.data = entity.data || {}; + for (var j = 0; j < columnNames.length; j++) { + var name = columnNames[j].name; + var value = name in entity && internalFieldsToJump.indexOf(name) === -1 ? + entity[name] : entity.data[name]; + var parsedValue = value === null || value === undefined ? '' : value; + col.push(parsedValue); + col2.push({key: name, value: parsedValue}); + } + rows.push(col); + } + + this.comment = comment; + this.columns = columnNames; + this.rows = rows; + }; + + setNodesDefaults() { + this.graph.nodes + .forEach(function(node) { + node.x = node.x || Math.random(); + node.y = node.y || Math.random(); + node.size = node.size || 10; + node.weight = node.weight || 1; + }); + }; + + setEdgesDefaults() { + let nodes = this.graph.nodes; + this.graph.edges + .forEach(function(edge) { + edge.type = edge.type || 'arrow'; + edge.color = edge.color || '#D3D3D3'; + edge.count = edge.count || 1; + if (typeof +edge.source === 'number') { + edge.source = nodes.filter((node) => edge.source === node.id)[0] || null; + } + if (typeof +edge.target === 'number') { + edge.target = nodes.filter((node) => edge.target === node.id)[0] || null; + } + }); + }; + + getNetworkProperties() { + var baseCols = ['id', 'label']; + var properties = {}; + this.graph.nodes.forEach(function(node) { + var hasLabel = 'label' in node && node.label !== ''; + if (!hasLabel) { + return; + } + var label = node.label; + var hasKey = hasLabel && label in properties; + var keys = _.uniq(Object.keys(node.data || {}) + .concat(hasKey ? properties[label].keys : baseCols)); + if (!hasKey) { + properties[label] = {selected: 'label'}; + } + properties[label].keys = keys; + }); + return properties; + }; +} \ No newline at end of file diff --git a/zeppelin-web/src/app/visualization/builtins/visualization-d3network.js b/zeppelin-web/src/app/visualization/builtins/visualization-d3network.js new file mode 100644 index 00000000000..82b5aef40f1 --- /dev/null +++ b/zeppelin-web/src/app/visualization/builtins/visualization-d3network.js @@ -0,0 +1,264 @@ +/* + * Licensed under the Apache License, Version 2.0 (the 'License'); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an 'AS IS' BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +import Visualization from '../visualization'; +import NetworkTransformation from '../../tabledata/network'; + +/** + * Visualize data in network format + */ +export default class NetworkVisualization extends Visualization { + constructor(targetEl, config) { + super(targetEl, config); + console.log('Init network viz'); + + if (!config.properties) { + config.properties = {}; + } + if (!config.d3Graph) { + config.d3Graph = { + forceLayout: { + timeout: 10000, + charge: -120, + linkDistance: 80, + }, + zoom: { + minScale: 1.3 + } + }; + } + this.targetEl.addClass('network'); + this.containerId = this.targetEl.prop('id'); + this.force = null; + this.svg = null; + this.$timeout = angular.injector(['ng']).get('$timeout'); + this.$interpolate = angular.injector(['ng']).get('$interpolate'); + this.transformation = new NetworkTransformation(config); + }; + + refresh() { + console.log('refresh'); + }; + + render(networkData) { + if (!('graph' in networkData)) { + console.log('graph not found'); + return; + } + console.log('Render Graph Visualization'); + + let transformationConfig = this.transformation.getSetting().scope.config; + console.log('cfg', transformationConfig); + if (transformationConfig && angular.equals({}, transformationConfig.properties)) { + transformationConfig.properties = networkData.getNetworkProperties(); + } + + this.targetEl.empty().append(''); + + let width = this.targetEl.width(); + let height = this.targetEl.height(); + let self = this; + let defaultOpacity = 0; + + let arcPath = (leftHand, d) => { + let start = leftHand ? d.source : d.target, + end = leftHand ? d.target : d.source, + dx = end.x - start.x, + dy = end.y - start.y, + dr = d.count === 1 && d.type === 'arrow' ? + 0 : Math.max(Math.sqrt(Math.pow(dx, 2) + Math.pow(dy, 2)), 200)/d.count, + sweep = leftHand ? 0 : 1; + return 'M' + start.x + ',' + start.y + 'A' + dr + ',' + dr + ' 0 0,' + sweep + ' ' + end.x + ',' + end.y; + }; + // Use elliptical arc path segments to doubly-encode directionality. + let tick = () => { + //Links + linkPath.attr('d', function(d) { + return arcPath(true, d); + }); + textPath.attr('d', function(d) { + return arcPath(d.source.x < d.target.x, d); + }); + //Nodes + circle.attr('transform', function(d) { + return 'translate(' + d.x + ',' + d.y + ')'; + }); + text.attr('transform', function(d) { + return 'translate(' + d.x + ',' + d.y + ')'; + }); + }; + + let setOpacity = (scale) => { + let opacity = scale >= +transformationConfig.d3Graph.zoom.minScale ? 1 : 0; + this.svg.selectAll('.nodeLabel') + .style('opacity', opacity); + this.svg.selectAll('textPath') + .style('opacity', opacity); + }; + + let zoom = d3.behavior.zoom() + .scaleExtent([1, 10]) + .on('zoom', () => { + console.log('zoom'); + setOpacity(d3.event.scale); + container.attr('transform', 'translate(' + d3.event.translate + ')scale(' + d3.event.scale + ')'); + }); + + this.svg = d3.select('#' + this.containerId + ' svg') + .attr('width', width) + .attr('height', height) + .call(zoom); + + this.force = d3.layout.force() + .charge(transformationConfig.d3Graph.forceLayout.charge) + .linkDistance(transformationConfig.d3Graph.forceLayout.linkDistance) + .on('tick', tick) + .nodes(networkData.graph.nodes) + .links(networkData.graph.edges) + .size([width, height]) + .on('start', () => { + console.log('force layout start'); + this.$timeout(() => { this.force.stop(); }, transformationConfig.d3Graph.forceLayout.timeout); + }) + .on('end', () => { + console.log('force layout stop'); + setOpacity(zoom.scale()); + }) + .start(); + + let renderFooterOnClick = (entity, type) => { + let footerId = this.containerId + '_footer'; + let obj = {id: entity.id, label: entity.defaultLabel || entity.label, type: type}; + let html = [this.$interpolate(['
  • {{type}}_id: {{id}}
  • ', + '
  • {{type}}_type: {{label}}
  • '].join(''))(obj)]; + html = html.concat(_.map(entity.data, (v, k) => { + return this.$interpolate('
  • {{field}}: {{value}}
  • ')({field: k, value: v}); + })); + angular.element('#' + footerId) + .find('.list-inline') + .empty() + .append(html.join('')); + }; + + let drag = d3.behavior.drag() + .origin((d) => d) + .on('dragstart', function(d) { + console.log('dragstart'); + d3.event.sourceEvent.stopPropagation(); + d3.select(this).classed('dragging', true); + self.force.stop(); + }) + .on('drag', function(d) { + console.log('drag'); + d.px += d3.event.dx; + d.py += d3.event.dy; + d.x += d3.event.dx; + d.y += d3.event.dy; + }) + .on('dragend', function(d) { + console.log('dragend'); + d.fixed = true; + d3.select(this).classed('dragging', false); + self.force.resume(); + }); + + let container = this.svg.append('g'); + container.append('svg:defs').selectAll('marker') + .data(['suit']) + .enter() + .append('svg:marker') + .attr('id', String) + .attr('viewBox', '0 -5 10 10') + .attr('refX', 16) + .attr('refY', 0) + .attr('markerWidth', 4) + .attr('markerHeight', 4) + .attr('orient', 'auto') + .append('svg:path') + .attr('d', 'M0,-5L10,0L0,5'); + //Links + let link = container.append('svg:g') + .on('click', () => { + renderFooterOnClick(d3.select(d3.event.target).datum(), 'edge'); + }) + .selectAll('g.link') + .data(self.force.links()) + .enter() + .append('g'); + let getPathId = (d) => this.containerId + '_' + d.source.index + '_' + d.target.index + '_' + d.count; + let showLabel = (d) => this._showNodeLabel(d); + let linkPath = link.append('svg:path') + .attr('class', 'link') + .attr('size', 10) + .attr('stroke', (d) => d.color) + .attr('marker-end', 'url(#suit)'); + let textPath = link.append('svg:path') + .attr('id', getPathId) + .attr('class', 'textpath'); + container.append('svg:g') + .selectAll('.pathLabel') + .data(self.force.links()) + .enter() + .append('svg:text') + .attr('class', 'pathLabel') + .append('svg:textPath') + .attr('startOffset', '50%') + .attr('text-anchor', 'middle') + .attr('xlink:href', (d) => '#' + getPathId(d)) + .text((d) => d.label) + .style('opacity', defaultOpacity); + //Nodes + let circle = container.append('svg:g') + .on('click', () => { + renderFooterOnClick(d3.select(d3.event.target).datum(), 'node'); + }) + .selectAll('circle') + .data(self.force.nodes()) + .enter().append('svg:circle') + .attr('r', (d) => d.size) + .attr('fill', (d) => d.color) + .call(drag); + let text = container.append('svg:g').selectAll('g') + .data(self.force.nodes()) + .enter().append('svg:g'); + text.append('svg:text') + .attr('x', (d) => d.size + 3) + .attr('size', 10) + .attr('y', '.31em') + .attr('class', (d) => 'nodeLabel shadow label-' + d.label) + .text(showLabel) + .style('opacity', defaultOpacity); + text.append('svg:text') + .attr('x',(d) => d.size + 3) + .attr('size', 10) + .attr('y', '.31em') + .attr('class', (d) => 'nodeLabel label-' + d.label) + .text(showLabel) + .style('opacity', defaultOpacity); + }; + + destroy() { + }; + + _showNodeLabel(d) { + let transformationConfig = this.transformation.getSetting().scope.config; + let selectedLabel = (transformationConfig.properties[d.label] || {selected: 'label'}).selected; + return d.data[selectedLabel] || d[selectedLabel]; + }; + + getTransformation() { + return this.transformation; + }; + +} \ No newline at end of file diff --git a/zeppelin-web/src/components/resizable/resizable.directive.js b/zeppelin-web/src/components/resizable/resizable.directive.js index afcfd1b7672..e1d9dd9b754 100644 --- a/zeppelin-web/src/components/resizable/resizable.directive.js +++ b/zeppelin-web/src/components/resizable/resizable.directive.js @@ -35,7 +35,9 @@ function resizable() { var colStep = window.innerWidth / 12; elem.off('resizestop'); var conf = angular.copy(resizableConfig); - if (resize.graphType === 'TABLE' || resize.graphType === 'TEXT') { + if (resize.graphType === 'TABLE' || + resize.graphType === 'TEXT' || + resize.graphType === 'NETWORK') { conf.grid = [colStep, 10]; conf.minHeight = 100; } else { diff --git a/zeppelin-web/test/spec/tabledata/datasetfactory.js b/zeppelin-web/test/spec/tabledata/datasetfactory.js new file mode 100644 index 00000000000..38b34681884 --- /dev/null +++ b/zeppelin-web/test/spec/tabledata/datasetfactory.js @@ -0,0 +1,48 @@ +/* + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +import NetworkData from '../../../src/app/tabledata/networkdata.js'; +import TableData from '../../../src/app/tabledata/tabledata.js'; +import {DatasetType} from '../../../src/app/tabledata/dataset.js'; +import DatasetFactory from '../../../src/app/tabledata/datasetfactory.js'; + + +describe('DatasetFactory build', function() { + var df; + + beforeAll(function() { + df = new DatasetFactory(); + }); + + it('should create a TableData instance', function() { + var td = df.createDataset(DatasetType.TABLE); + expect(td instanceof TableData).toBeTruthy(); + expect(td.columns.length).toBe(0); + expect(td.rows.length).toBe(0); + }); + + it('should create a NetworkData instance', function() { + var nd = df.createDataset(DatasetType.NETWORK); + expect(nd instanceof NetworkData).toBeTruthy(); + expect(nd.columns.length).toBe(0); + expect(nd.rows.length).toBe(0); + expect(nd.graph).toEqual({}); + }); + + it('should thrown an Error', function() { + expect(function() { df.createDataset('text'); }) + .toThrow(new Error('Dataset type not found')); + }); + +}); diff --git a/zeppelin-web/test/spec/tabledata/networkdata.js b/zeppelin-web/test/spec/tabledata/networkdata.js new file mode 100644 index 00000000000..a0007d28770 --- /dev/null +++ b/zeppelin-web/test/spec/tabledata/networkdata.js @@ -0,0 +1,46 @@ +/* + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +import NetworkData from '../../../src/app/tabledata/networkdata.js'; +import {DatasetType} from '../../../src/app/tabledata/dataset.js'; + +describe('NetworkData build', function() { + var nd; + + beforeEach(function() { + nd = new NetworkData(); + }); + + it('should initialize the default value', function() { + expect(nd.columns.length).toBe(0); + expect(nd.rows.length).toBe(0); + expect(nd.graph).toEqual({}); + }); + + it('should able to create NetowkData from paragraph result', function() { + var jsonExpected = {nodes: [{id: 1}, {id: 2}], edges: [{source: 2, target: 1, id: 1}]}; + nd.loadParagraphResult({ + type: DatasetType.NETWORK, + msg: JSON.stringify(jsonExpected) + }); + + expect(nd.columns.length).toBe(2); + expect(nd.rows.length).toBe(3); + expect(nd.graph.nodes[0].id).toBe(jsonExpected.nodes[0].id); + expect(nd.graph.nodes[1].id).toBe(jsonExpected.nodes[1].id); + expect(nd.graph.edges[0].id).toBe(jsonExpected.edges[0].id); + expect(nd.graph.edges[0].source.id).toBe(jsonExpected.nodes[1].id); + expect(nd.graph.edges[0].target.id).toBe(jsonExpected.nodes[0].id); + }); +}); diff --git a/zeppelin-zengine/src/main/java/org/apache/zeppelin/conf/ZeppelinConfiguration.java b/zeppelin-zengine/src/main/java/org/apache/zeppelin/conf/ZeppelinConfiguration.java index 0708719c30d..baf0ad33e83 100644 --- a/zeppelin-zengine/src/main/java/org/apache/zeppelin/conf/ZeppelinConfiguration.java +++ b/zeppelin-zengine/src/main/java/org/apache/zeppelin/conf/ZeppelinConfiguration.java @@ -355,7 +355,7 @@ public String getTrustStorePassword() { public String getNotebookDir() { return getString(ConfVars.ZEPPELIN_NOTEBOOK_DIR); } - + public String getUser() { return getString(ConfVars.ZEPPELIN_NOTEBOOK_S3_USER); } @@ -569,7 +569,8 @@ public static enum ConfVars { + "org.apache.zeppelin.hbase.HbaseInterpreter," + "org.apache.zeppelin.bigquery.BigQueryInterpreter," + "org.apache.zeppelin.beam.BeamInterpreter," - + "org.apache.zeppelin.scio.ScioInterpreter"), + + "org.apache.zeppelin.scio.ScioInterpreter," + + "org.apache.zeppelin.neo4j.Neo4jCypherInterpreter"), ZEPPELIN_INTERPRETER_JSON("zeppelin.interpreter.setting", "interpreter-setting.json"), ZEPPELIN_INTERPRETER_DIR("zeppelin.interpreter.dir", "interpreter"), ZEPPELIN_INTERPRETER_LOCALREPO("zeppelin.interpreter.localRepo", "local-repo"), @@ -577,7 +578,7 @@ public static enum ConfVars { ZEPPELIN_INTERPRETER_MAX_POOL_SIZE("zeppelin.interpreter.max.poolsize", 10), ZEPPELIN_INTERPRETER_GROUP_ORDER("zeppelin.interpreter.group.order", "spark,md,angular,sh," + "livy,alluxio,file,psql,flink,python,ignite,lens,cassandra,geode,kylin,elasticsearch," - + "scalding,jdbc,hbase,bigquery,beam,pig,scio"), + + "scalding,jdbc,hbase,bigquery,beam,pig,scio,neo4j"), ZEPPELIN_INTERPRETER_OUTPUT_LIMIT("zeppelin.interpreter.output.limit", 1024 * 100), ZEPPELIN_ENCODING("zeppelin.encoding", "UTF-8"), ZEPPELIN_NOTEBOOK_DIR("zeppelin.notebook.dir", "notebook"),