Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions python/tvm/meta_schedule/testing/custom_builder_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,7 @@ def run_module_via_rpc(
rpc_config: "RPCConfig",
lib: "Module",
dev_type: str,
args: List["np.ndarray"],
args: Dict[str, "np.ndarray"],
continuation: Callable,
):
"""Execute a tvm.runtime.Module on RPC remote"""
Expand All @@ -166,5 +166,7 @@ def run_module_via_rpc(
_, filename = os.path.split(filename)
rt_mod = session.load_module(filename)
dev = session.device(dev_type=dev_type, dev_id=0)
args = [ndarray.array(arg, dev) for arg in args]
return continuation(rt_mod, dev, *args)
nd_args = {}
for arg_key, arg_value in args.items():
nd_args[arg_key] = ndarray.array(arg_value, dev)
return continuation(rt_mod, dev, nd_args)
30 changes: 19 additions & 11 deletions python/tvm/meta_schedule/testing/tune_relay_auto_scheduler.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,10 +134,13 @@ def main():
ARGS.input_shape,
cache_dir=ARGS.cache_dir,
)
input_info = {input_name: input_shape}
input_data = {}
print(f"Workload: {ARGS.workload}")
print(f" input_name: {input_name}")
print(f" input_shape: {input_shape}")
print(f" input_dtype: {input_dtype}")
for input_name, input_shape in input_info.items():
print(f" input_name: {input_name}")
print(f" input_shape: {input_shape}")
print(f" input_dtype: {input_dtype}")
tasks, task_weights = auto_scheduler.extract_tasks(
mod["main"],
params,
Expand Down Expand Up @@ -170,10 +173,13 @@ def main():
params=params,
)
graph, rt_mod, params = lib.graph_json, lib.lib, lib.params
if input_dtype.startswith("float"):
input_data = np.random.uniform(size=input_shape).astype(input_dtype)
else:
input_data = np.random.randint(low=0, high=10000, size=input_shape, dtype=input_dtype)
for input_name, input_shape in input_info.items():
if input_dtype.startswith("float"):
input_data[input_name] = np.random.uniform(size=input_shape).astype(input_dtype)
else:
input_data[input_name] = np.random.randint(
low=0, high=10000, size=input_shape, dtype=input_dtype
)

def f_timer(rt_mod, dev, input_data):
# pylint: disable=import-outside-toplevel
Expand All @@ -182,7 +188,8 @@ def f_timer(rt_mod, dev, input_data):
# pylint: enable=import-outside-toplevel

mod = GraphModule(rt_mod["default"](dev))
mod.set_input(input_name, input_data)
for input_name, input_value in input_data.items():
mod.set_input(input_name, input_value)
ftimer = mod.module.time_evaluator(
"run",
dev,
Expand All @@ -196,7 +203,7 @@ def f_timer(rt_mod, dev, input_data):
rpc_config=ARGS.rpc_config,
lib=lib,
dev_type=ARGS.target.kind.name,
args=[input_data],
args=input_data,
continuation=f_timer,
)

Expand All @@ -206,7 +213,8 @@ def f_per_layer(rt_mod, dev, input_data):

# pylint: enable=import-outside-toplevel
mod = create(graph, rt_mod, dev)
mod.set_input(input_name, input_data)
for input_name, input_value in input_data.items():
mod.set_input(input_name, input_value)
graph_nodes = [n["name"] for n in json.loads(graph)["nodes"]]
graph_time = mod.run_individual(number=10, repeat=1, min_repeat_ms=5000)
print("|graph_nodes| = ", len(graph_nodes))
Expand All @@ -219,7 +227,7 @@ def f_per_layer(rt_mod, dev, input_data):
rpc_config=ARGS.rpc_config,
lib=rt_mod,
dev_type=ARGS.target.kind.name,
args=[input_data],
args=input_data,
continuation=f_per_layer,
)

Expand Down
30 changes: 19 additions & 11 deletions python/tvm/meta_schedule/testing/tune_relay_meta_schedule.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,10 +103,13 @@ def main():
ARGS.input_shape,
cache_dir=ARGS.cache_dir,
)
input_info = {input_name: input_shape}
input_data = {}
print(f"Workload: {ARGS.workload}")
print(f" input_name: {input_name}")
print(f" input_shape: {input_shape}")
print(f" input_dtype: {input_dtype}")
for input_name, input_shape in input_info.items():
print(f" input_name: {input_name}")
print(f" input_shape: {input_shape}")
print(f" input_dtype: {input_dtype}")
alloc_repeat = 1
runner = ms.runner.RPCRunner(
rpc_config=ARGS.rpc_config,
Expand All @@ -133,10 +136,13 @@ def main():
params=params,
)
graph, rt_mod, params = lib.graph_json, lib.lib, lib.params
if input_dtype.startswith("float"):
input_data = np.random.uniform(size=input_shape).astype(input_dtype)
else:
input_data = np.random.randint(low=0, high=10000, size=input_shape, dtype=input_dtype)
for input_name, input_shape in input_info.items():
if input_dtype.startswith("float"):
input_data[input_name] = np.random.uniform(size=input_shape).astype(input_dtype)
else:
input_data[input_name] = np.random.randint(
low=0, high=10000, size=input_shape, dtype=input_dtype
)

def f_timer(rt_mod, dev, input_data):
# pylint: disable=import-outside-toplevel
Expand All @@ -145,7 +151,8 @@ def f_timer(rt_mod, dev, input_data):
# pylint: enable=import-outside-toplevel

mod = GraphModule(rt_mod["default"](dev))
mod.set_input(input_name, input_data)
for input_name, input_value in input_data.items():
mod.set_input(input_name, input_value)
ftimer = mod.module.time_evaluator(
"run",
dev,
Expand All @@ -159,7 +166,7 @@ def f_timer(rt_mod, dev, input_data):
rpc_config=ARGS.rpc_config,
lib=lib,
dev_type=ARGS.target.kind.name,
args=[input_data],
args=input_data,
continuation=f_timer,
)

Expand All @@ -169,7 +176,8 @@ def f_per_layer(rt_mod, dev, input_data):

# pylint: enable=import-outside-toplevel
mod = create(graph, rt_mod, dev)
mod.set_input(input_name, input_data)
for input_name, input_value in input_data.items():
mod.set_input(input_name, input_value)
graph_nodes = [n["name"] for n in json.loads(graph)["nodes"]]
graph_time = mod.run_individual(number=10, repeat=1, min_repeat_ms=5000)
print("|graph_nodes| = ", len(graph_nodes))
Expand All @@ -182,7 +190,7 @@ def f_per_layer(rt_mod, dev, input_data):
rpc_config=ARGS.rpc_config,
lib=rt_mod,
dev_type=ARGS.target.kind.name,
args=[input_data],
args=input_data,
continuation=f_per_layer,
)

Expand Down
49 changes: 49 additions & 0 deletions tests/python/unittest/test_meta_schedule_tune_tir.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,9 +17,15 @@
# pylint: disable=missing-docstring
import logging
import tempfile
import numpy as np

import pytest
import tvm

from tvm import meta_schedule as ms
from tvm.meta_schedule import TuneConfig, tune_tir
from tvm.meta_schedule.testing.custom_builder_runner import run_module_via_rpc
from tvm.meta_schedule.testing.local_rpc import LocalRPC
from tvm.script import tir as T
from tvm.target import Target
from tvm.tir import Schedule
Expand Down Expand Up @@ -89,6 +95,49 @@ def test_tune_matmul_cuda():
print(sch.trace)


def test_tune_run_module_via_rpc():
target = tvm.target.Target("llvm")
rt_mod = tvm.build(matmul, target)

# construct the input
input_data = {}
input_shape = (128, 128)
input_dtype = "float32"
a_np = np.random.uniform(size=input_shape).astype(input_dtype)
b_np = np.random.uniform(size=input_shape).astype(input_dtype)
c_np = np.zeros(input_shape).astype(input_dtype)
for i in range(128):
for j in range(128):
for k in range(128):
c_np[i, j] = c_np[i, j] + a_np[i, k] * b_np[j, k]
input_data["a"] = a_np
input_data["b"] = b_np
input_data["c"] = np.zeros(input_shape).astype(input_dtype)

with LocalRPC() as rpc:
rpc_config = ms.runner.RPCConfig(
tracker_host=rpc.tracker_host,
tracker_port=rpc.tracker_port,
tracker_key=rpc.tracker_key,
session_priority=1,
session_timeout_sec=100,
)

def f_timer(rt_mod, dev, input_data):
rt_mod(input_data["a"], input_data["b"], input_data["c"])
return input_data["c"]

result = run_module_via_rpc(
rpc_config=rpc_config,
lib=rt_mod,
dev_type=target.kind.name,
args=input_data,
continuation=f_timer,
)
tvm.testing.assert_allclose(result.numpy(), c_np, rtol=1e-3)


if __name__ == """__main__""":
test_tune_matmul_cpu()
test_tune_matmul_cuda()
test_tune_run_module_via_rpc()