-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Closed
Closed
Copy link
Labels
needs-triagePRs or issues that need to be investigated by maintainers to find the right assignees to address itPRs or issues that need to be investigated by maintainers to find the right assignees to address ittype: bug
Description
Expected behavior
TVM should run the model correctly.
Actual behavior
When compiling and running the model, TVM crashes:
!!!!!!! TVM FFI encountered a Segfault !!!!!!!
File "<unknown>", in __pyx_pw_3tvm_3ffi_4core_8Function_1__call__(_object*, _object* const*, long, _object*)
File "<unknown>", in tvm::ffi::FunctionObj::SafeCall(void*, TVMFFIAny const*, int, TVMFFIAny*)
File "<unknown>", in tvm::runtime::relax_vm::VirtualMachineImpl::GetFunction(tvm::ffi::String const&, tvm::ffi::ObjectPtr<tvm::ffi::Object> const&)::{lambda(tvm::ffi::PackedArgs, tvm::ffi::Any*)#4}::operator()(tvm::ffi::PackedArgs, tvm::ffi::Any*) const
File "<unknown>", in tvm::runtime::relax_vm::VirtualMachineImpl::_InvokeClosureStateful(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
File "<unknown>", in tvm::runtime::relax_vm::VirtualMachineImpl::InvokeClosureInternal(tvm::ffi::ObjectRef const&, std::vector<tvm::ffi::Any, std::allocator<tvm::ffi::Any> > const&)
File "<unknown>", in tvm::runtime::relax_vm::VirtualMachineImpl::GetClosureInternal(tvm::ffi::String const&, bool)::{lambda(tvm::ffi::PackedArgs, tvm::ffi::Any*)#1}::operator()(tvm::ffi::PackedArgs, tvm::ffi::Any*) const [clone .isra.0]
File "<unknown>", in tvm::runtime::relax_vm::VirtualMachineImpl::InvokeBytecode(long, std::vector<tvm::ffi::Any, std::allocator<tvm::ffi::Any> > const&)
File "<unknown>", in tvm::runtime::relax_vm::VirtualMachineImpl::RunLoop()
File "<unknown>", in tvm::runtime::relax_vm::VirtualMachineImpl::RunInstrCall(tvm::runtime::relax_vm::VMFrame*, tvm::runtime::relax_vm::Instruction)
File "<unknown>", in tvm::runtime::relax_vm::VirtualMachineImpl::InvokeClosurePacked(tvm::ffi::ObjectRef const&, tvm::ffi::PackedArgs, tvm::ffi::Any*)
File "<unknown>", in tvm::ffi::details::FunctionObjImpl<tvm::ffi::Function::FromPacked<tvm::runtime::WrapFFIFunction(int (*)(void*, TVMFFIAny const*, int, TVMFFIAny*), tvm::ffi::ObjectPtr<tvm::ffi::Object> const&)::{lambda(tvm::ffi::PackedArgs, tvm::ffi::Any*)#1}>(tvm::runtime::WrapFFIFunction(int (*)(void*, TVMFFIAny const*, int, TVMFFIAny*), tvm::ffi::ObjectPtr<tvm::ffi::Object> const&)::{lambda(tvm::ffi::PackedArgs, tvm::ffi::Any*)#1})::{lambda(tvm::ffi::AnyView const*, int, tvm::ffi::Any*)#1}>::Call(tvm::ffi::FunctionObj const*, tvm::ffi::AnyView const*, int, tvm::ffi::Any*)
File "../sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S", line 262, in 0x00007f887fd46963
File "/build/glibc-FcRMwW/glibc-2.31/signal/../sysdeps/unix/sysv/linux/x86_64/sigaction.c", in 0x00007f887fbfe08f
File "<unknown>", in tvm::ffi::(anonymous namespace)::backtrace_handler(int)
File "<unknown>", in tvm::ffi::(anonymous namespace)::Traceback()
Segmentation fault (core dumped)Environment
OS: Ubuntu 20.04
TVM: 0.21.dev0 (3db71bb)
onnxruntime: 1.21.0
Steps to reproduce
This bug can be reproduced by the following code with the model in the attachment. As shown in the code, the model can be executed by onnxruntime. However, TVM crashes when calling the invoke_stateful function.
import sys
import numpy as np
import onnx
import onnxruntime
import tvm
from tvm import relax
from tvm.relax.frontend.onnx import from_onnx
import pickle
def main():
onnx_model = onnx.load("a1783.onnx")
shape_onnx_model = onnx.shape_inference.infer_shapes(onnx_model)
onnx.save(shape_onnx_model, '1111.onnx')
with open("inputs.pkl", "rb") as fp:
inputs = pickle.load(fp)
try:
ort_session = onnxruntime.InferenceSession(
onnx_model.SerializeToString(), providers=["CPUExecutionProvider"]
)
ort_output = ort_session.run([], inputs)
except Exception as e:
print(e)
sys.exit(1)
print("ONNXRuntime:\n", ort_output)
# Convert the onnx model into relax through the onnx importer.
tvm_model = from_onnx(onnx_model, keep_params_in_input=True)
# Convert operators for inference mode.
tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
# Legalize any relax ops into tensorir.
tvm_model = relax.transform.LegalizeOps()(tvm_model)
# Separate model from parameters.
tvm_model, params = relax.frontend.detach_params(tvm_model)
# Prepare inputs.
input_list = [
inputs[key.name_hint] for key in tvm_model["main"].params if key.name_hint in inputs
]
if params:
input_list += params["main"]
# Compile the relax graph into a VM then run.
with tvm.transform.PassContext(opt_level=3):
ex = relax.build(tvm_model, target="llvm")
vm = relax.VirtualMachine(ex, tvm.cpu())
# Run model and check outputs.
vm.set_input("main", *input_list)
vm.invoke_stateful("main")
if __name__ == "__main__":
main()
Triage
- needs-triage
Metadata
Metadata
Assignees
Labels
needs-triagePRs or issues that need to be investigated by maintainers to find the right assignees to address itPRs or issues that need to be investigated by maintainers to find the right assignees to address ittype: bug