@@ -532,8 +532,7 @@ def add_one(A: T.Buffer((T.int64(10), T.int64(10)), "float32"), T_add: T.Buffer(
532532 def _initialize_effect () -> R .Tuple (R .Object ):
533533 with R .dataflow ():
534534 _io : R .Object = R .null_value ()
535- lv : R .Tuple (R .Object ) = (_io ,)
536- gv : R .Tuple (R .Object ) = lv
535+ gv = (_io ,)
537536 R .output (gv )
538537 return gv
539538
@@ -605,8 +604,7 @@ def llama_fused_rope(var_qkv: T.handle, offset: T.int64, var_q: T.handle, var_k:
605604 def _initialize_effect () -> R .Tuple (R .Object ):
606605 with R .dataflow ():
607606 _io : R .Object = R .null_value ()
608- lv : R .Tuple (R .Object ) = (_io ,)
609- gv : R .Tuple (R .Object ) = lv
607+ gv = (_io ,)
610608 R .output (gv )
611609 return gv
612610
@@ -693,8 +691,7 @@ def inplace_take(
693691 def _initialize_effect () -> R .Tuple (R .Object ):
694692 with R .dataflow ():
695693 _io : R .Object = R .null_value ()
696- lv : R .Tuple (R .Object ) = (_io ,)
697- gv : R .Tuple (R .Object ) = lv
694+ gv = (_io ,)
698695 R .output (gv )
699696 return gv
700697
@@ -711,13 +708,12 @@ def test(
711708 R .func_attr ({"num_input" : 4 })
712709 cls = Expected
713710 with R .dataflow ():
714- lv1 = R .call_tir (
711+ gv1 = R .call_tir (
715712 cls .inplace_take ,
716713 (embedding_table , input_ids , embedding_dst ),
717714 out_sinfo = R .Tensor ((total_seq_len , hidden_size ), dtype ),
718715 tir_vars = R .shape ([offset_1 ]),
719716 )
720- gv1 : R .Tensor ((total_seq_len , hidden_size ), dtype ) = lv1
721717 R .output (gv1 )
722718 return gv1
723719
@@ -766,8 +762,7 @@ def test(A: R.Tensor((16, 16), dtype="float32")) -> R.Tensor((16, 16), dtype="fl
766762 R .func_attr ({"num_input" : 1 })
767763 cls = Expected
768764 with R .dataflow ():
769- lv = R .call_tir (cls .tir_func , (A ,), out_sinfo = R .Tensor ((16 , 16 ), dtype = "float32" ))
770- gv : R .Tensor ((16 , 16 ), dtype = "float32" ) = lv
765+ gv = R .call_tir (cls .tir_func , (A ,), out_sinfo = R .Tensor ((16 , 16 ), dtype = "float32" ))
771766 R .output (gv )
772767 return gv
773768
@@ -794,8 +789,7 @@ class Expected:
794789 def _initialize_effect () -> R .Tuple (R .Object ):
795790 with R .dataflow ():
796791 _io : R .Object = R .null_value ()
797- lv : R .Tuple (R .Object ) = (_io ,)
798- gv : R .Tuple (R .Object ) = lv
792+ gv = (_io ,)
799793 R .output (gv )
800794 return gv
801795
@@ -845,7 +839,6 @@ def test(self):
845839
846840@tvm .testing .requires_gpu
847841def test_multinomial_from_uniform ():
848-
849842 prob_shape = (3 , 5 )
850843 sample_shape = (6 , 1 )
851844
@@ -882,8 +875,7 @@ def get_sample_index(A: T.handle, B: T.handle, C: T.handle, D: T.handle):
882875 def _initialize_effect () -> R .Tuple (R .Object ):
883876 with R .dataflow ():
884877 _io : R .Object = R .null_value ()
885- lv : R .Tuple (R .Object ) = (_io ,)
886- gv : R .Tuple (R .Object ) = lv
878+ gv = (_io ,)
887879 R .output (gv )
888880 return gv
889881
@@ -1009,8 +1001,7 @@ def get_renorm_prob(A: T.handle, B: T.handle, C: T.handle, D: T.handle):
10091001 def _initialize_effect () -> R .Tuple (R .Object ):
10101002 with R .dataflow ():
10111003 _io : R .Object = R .null_value ()
1012- lv : R .Tuple (R .Object ) = (_io ,)
1013- gv : R .Tuple (R .Object ) = lv
1004+ gv = (_io ,)
10141005 R .output (gv )
10151006 return gv
10161007
@@ -1124,8 +1115,7 @@ def get_renorm_cutoff(A: T.handle, B: T.handle, C: T.handle, D: T.handle, E: T.h
11241115 def _initialize_effect () -> R .Tuple (R .Object ):
11251116 with R .dataflow ():
11261117 _io : R .Object = R .null_value ()
1127- lv : R .Tuple (R .Object ) = (_io ,)
1128- gv : R .Tuple (R .Object ) = lv
1118+ gv = (_io ,)
11291119 R .output (gv )
11301120 return gv
11311121
0 commit comments