|
| 1 | +# Licensed to the Apache Software Foundation (ASF) under one |
| 2 | +# or more contributor license agreements. See the NOTICE file |
| 3 | +# distributed with this work for additional information |
| 4 | +# regarding copyright ownership. The ASF licenses this file |
| 5 | +# to you under the Apache License, Version 2.0 (the |
| 6 | +# "License"); you may not use this file except in compliance |
| 7 | +# with the License. You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, |
| 12 | +# software distributed under the License is distributed on an |
| 13 | +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | +# KIND, either express or implied. See the License for the |
| 15 | +# specific language governing permissions and limitations |
| 16 | +# under the License. |
| 17 | + |
| 18 | +import os |
| 19 | +import os.path |
| 20 | +import pathlib |
| 21 | +import sys |
| 22 | +import pytest |
| 23 | +import numpy as np |
| 24 | +import logging |
| 25 | +import tempfile |
| 26 | +import csv |
| 27 | + |
| 28 | +import tvm.testing |
| 29 | +from tvm import te |
| 30 | +from tvm import relay |
| 31 | +from tvm.relay.backend import Executor, Runtime |
| 32 | +from tvm.contrib import utils, ndk |
| 33 | +from tvm.contrib.hexagon.build import HexagonLauncher |
| 34 | +import tvm.contrib.hexagon as hexagon |
| 35 | + |
| 36 | +from .conftest import requires_hexagon_toolchain |
| 37 | + |
| 38 | +RPC_SERVER_PORT = 7070 |
| 39 | + |
| 40 | +# This is a fixed detail of the v68 architecture. |
| 41 | +HVX_VECTOR_BYTES = 128 |
| 42 | + |
| 43 | +# NOTE on server ports: |
| 44 | +# These tests use different port numbers for the RPC server (7070 + ...). |
| 45 | +# The reason is that an RPC session cannot be gracefully closed without |
| 46 | +# triggering TIME_WAIT state on the server socket. This prevents another |
| 47 | +# server to bind to the same port until the wait time elapses. |
| 48 | + |
| 49 | + |
| 50 | +@requires_hexagon_toolchain |
| 51 | +def test_elemwise_add(android_serial_number, hexagon_launcher): |
| 52 | + """ |
| 53 | + Starting with an elementwise-add computation, try various schedules / optimizations to |
| 54 | + see the impact they have on performance. |
| 55 | +
|
| 56 | + The main motivation for this test is to explore the relationship between these |
| 57 | + schedules / optimizations vs. how effectively the primfunc uses the Hexagon's |
| 58 | + HVX units. |
| 59 | + """ |
| 60 | + host_output_dir = tempfile.mkdtemp() |
| 61 | + |
| 62 | + print("-" * 80) |
| 63 | + print("OUTPUT DIRECTORY: {}".format(host_output_dir)) |
| 64 | + print("-" * 80) |
| 65 | + print() |
| 66 | + |
| 67 | + # TODO: We should move this into a separate test fixture, to make it easier to write |
| 68 | + # additional benchmarking functions. We'd just need to generalize the assumptions regarding |
| 69 | + # the particular fields being tracked as independent variables. |
| 70 | + class benchmark_results_collection: |
| 71 | + def __init__(self): |
| 72 | + self.row_dicts_ = [] |
| 73 | + |
| 74 | + def num_failures(self): |
| 75 | + num = 0 |
| 76 | + for d in self.row_dicts_: |
| 77 | + if d["status"] == "FAIL": |
| 78 | + num += 1 |
| 79 | + return num |
| 80 | + |
| 81 | + def record_success( |
| 82 | + self, dtype, sched_type, mem_scope, num_vecs_per_tensor, benchmark_result |
| 83 | + ): |
| 84 | + median_usec = benchmark_result.median * 1000000 |
| 85 | + min_usec = benchmark_result.min * 1000000 |
| 86 | + max_usec = benchmark_result.max * 1000000 |
| 87 | + |
| 88 | + self.row_dicts_.append( |
| 89 | + { |
| 90 | + "dtype": dtype, |
| 91 | + "sched_type": sched_type, |
| 92 | + "mem_scope": mem_scope, |
| 93 | + "num_vecs_per_tensor": num_vecs_per_tensor, |
| 94 | + "status": "OK", |
| 95 | + "median(µsec)": f"{median_usec:.3}", |
| 96 | + "min(µsec)": f"{min_usec:.3}", |
| 97 | + "max(µsec)": f"{max_usec:.3}", |
| 98 | + } |
| 99 | + ) |
| 100 | + |
| 101 | + def record_failure(self, dtype, sched_type, mem_scope, num_vecs_per_tensor, error_text): |
| 102 | + self.row_dicts_.append( |
| 103 | + { |
| 104 | + "dtype": dtype, |
| 105 | + "sched_type": sched_type, |
| 106 | + "mem_scope": mem_scope, |
| 107 | + "num_vecs_per_tensor": num_vecs_per_tensor, |
| 108 | + "status": "FAIL", |
| 109 | + "comment": error_text, |
| 110 | + } |
| 111 | + ) |
| 112 | + |
| 113 | + def dump(self, f): |
| 114 | + csv.register_dialect( |
| 115 | + "benchmarks", |
| 116 | + delimiter="\t", |
| 117 | + quotechar='"', |
| 118 | + quoting=csv.QUOTE_MINIMAL, |
| 119 | + ) |
| 120 | + |
| 121 | + fieldnames = [ |
| 122 | + "dtype", |
| 123 | + "sched_type", |
| 124 | + "mem_scope", |
| 125 | + "num_vecs_per_tensor", |
| 126 | + "status", |
| 127 | + "median(µsec)", |
| 128 | + "min(µsec)", |
| 129 | + "max(µsec)", |
| 130 | + "comment", |
| 131 | + ] |
| 132 | + |
| 133 | + writer = csv.DictWriter(f, fieldnames, dialect="benchmarks", restval="") |
| 134 | + |
| 135 | + writer.writeheader() |
| 136 | + for d in self.row_dicts_: |
| 137 | + writer.writerow(d) |
| 138 | + |
| 139 | + br = benchmark_results_collection() |
| 140 | + |
| 141 | + # Create and benchmark a single primfunc. |
| 142 | + # If an unexpected problem occurs, raise an exception. Otherwise add a row of output to 'br'. |
| 143 | + def test_one_config(dtype, sched_type, mem_scope, num_vectors_per_tensor): |
| 144 | + version_name = f"dtype:{dtype}-schedtype:{sched_type}-memscope:{mem_scope}-numvecs:{num_vectors_per_tensor}" |
| 145 | + print(f"CONFIGURATION: {version_name}") |
| 146 | + |
| 147 | + dtype_bits = tvm._ffi.runtime_ctypes.DataType(dtype).bits |
| 148 | + assert dtype_bits % 8 == 0 |
| 149 | + dtype_bytes = dtype_bits // 8 |
| 150 | + |
| 151 | + elem_per_hvx_vector = HVX_VECTOR_BYTES // dtype_bytes |
| 152 | + |
| 153 | + # Note! We're providing the complete input tensor shapes now, |
| 154 | + # whereas the original code only reveals the exact shape when |
| 155 | + # about to call the kernel. |
| 156 | + |
| 157 | + shape = [ |
| 158 | + num_vectors_per_tensor, |
| 159 | + elem_per_hvx_vector, |
| 160 | + ] |
| 161 | + |
| 162 | + A = tvm.te.placeholder(shape, dtype=dtype) |
| 163 | + B = tvm.te.placeholder(shape, dtype=dtype) |
| 164 | + C = tvm.te.compute(A.shape, lambda i, j: A[i, j] + B[i, j], name="C") |
| 165 | + |
| 166 | + sched = tvm.te.create_schedule(C.op) |
| 167 | + |
| 168 | + if sched_type == 1: |
| 169 | + pass |
| 170 | + elif sched_type == 2: |
| 171 | + sched[C].vectorize(C.op.axis[1]) |
| 172 | + else: |
| 173 | + raise Exception("Unknown schedule type") |
| 174 | + |
| 175 | + # This module is only created so humans can inspect its IR. |
| 176 | + module_for_ir_dump = tvm.lower(sched, [A, B, C], "foo") |
| 177 | + |
| 178 | + report_path = os.path.join(host_output_dir, f"{version_name}.txt") |
| 179 | + |
| 180 | + with open(report_path, "w") as f: |
| 181 | + f.write("LOWERED IR MODULE:\n") |
| 182 | + f.write(str(module_for_ir_dump)) |
| 183 | + f.write("\n") |
| 184 | + |
| 185 | + target_hexagon = tvm.target.hexagon("v68", link_params=True) |
| 186 | + func = tvm.build( |
| 187 | + sched, |
| 188 | + [A, B, C], |
| 189 | + tvm.target.Target(target_hexagon, host=target_hexagon), |
| 190 | + name="elemwise_add", |
| 191 | + ) |
| 192 | + |
| 193 | + host_dso_binary_path = os.path.join(host_output_dir, f"test_binary-{version_name}.so") |
| 194 | + target_dso_binary_filename = "test_binary.so" |
| 195 | + |
| 196 | + func.save(str(host_dso_binary_path)) |
| 197 | + print("SAVED BINARY TO HOST PATH: {}".format(str(host_dso_binary_path))) |
| 198 | + |
| 199 | + hexagon_launcher.upload(host_dso_binary_path, target_dso_binary_filename) |
| 200 | + hexagon_launcher.start_server() |
| 201 | + |
| 202 | + try: |
| 203 | + with hexagon_launcher.start_session() as sess: |
| 204 | + mod = hexagon_launcher.load_module(target_dso_binary_filename, sess) |
| 205 | + |
| 206 | + host_numpy_A_data = np.ndarray(shape, dtype=dtype) |
| 207 | + host_numpy_B_data = np.ndarray(shape, dtype=dtype) |
| 208 | + |
| 209 | + for i in range(shape[0]): |
| 210 | + for j in range(shape[1]): |
| 211 | + host_numpy_A_data[i, j] = i + j |
| 212 | + host_numpy_B_data[i, j] = (i + 1) * (j + 1) |
| 213 | + |
| 214 | + host_numpy_C_data_expected = host_numpy_A_data + host_numpy_B_data |
| 215 | + host_numpy_C_data = np.zeros_like(host_numpy_C_data_expected) |
| 216 | + |
| 217 | + A_data = tvm.nd.empty(shape, dtype, sess.device, mem_scope) |
| 218 | + A_data.copyfrom(host_numpy_A_data) |
| 219 | + |
| 220 | + B_data = tvm.nd.empty(shape, dtype, sess.device, mem_scope) |
| 221 | + B_data.copyfrom(host_numpy_B_data) |
| 222 | + |
| 223 | + C_data = tvm.nd.empty(shape, dtype, sess.device, mem_scope) |
| 224 | + |
| 225 | + # NOTE: We may want to soften these numbers, depending on future findings. |
| 226 | + timer = mod.time_evaluator("elemwise_add", sess.device, number=10, repeat=1) |
| 227 | + timing_result = timer(A_data, B_data, C_data) |
| 228 | + |
| 229 | + print("TIMING RESULT: {}".format(timing_result)) |
| 230 | + |
| 231 | + # Verify that the computation actually happened, and produced the correct result. |
| 232 | + result = C_data.numpy() |
| 233 | + tvm.testing.assert_allclose(host_numpy_C_data_expected, result) |
| 234 | + |
| 235 | + br.record_success( |
| 236 | + dtype, sched_type, mem_scope, num_vectors_per_tensor, timing_result |
| 237 | + ) |
| 238 | + |
| 239 | + except Exception as err: |
| 240 | + f.write("ERROR:\n") |
| 241 | + f.write("{}\n".format(err)) |
| 242 | + br.record_failure( |
| 243 | + dtype, sched_type, mem_scope, num_vectors_per_tensor, f"See {report_path}" |
| 244 | + ) |
| 245 | + |
| 246 | + hexagon_launcher.stop_server() |
| 247 | + |
| 248 | + # ----------------------------------------------------------------------------------------------- |
| 249 | + |
| 250 | + # Hexagon v69 allows more dtypes, but we're sticking with v68 for now. |
| 251 | + for dtype in [ |
| 252 | + "int8", |
| 253 | + ]: |
| 254 | + |
| 255 | + # These numbers are only meaningful in the context of this script. |
| 256 | + for sched_type in [ |
| 257 | + 1, |
| 258 | + 2, |
| 259 | + ]: |
| 260 | + |
| 261 | + for mem_scope in ["global", "global.vtcm"]: |
| 262 | + |
| 263 | + # These numbers are fairly arbitrary, but they're meant to stress memory/caches to |
| 264 | + # various extents. |
| 265 | + for num_vectors_per_tensor in [1, 16, 64, 512, 2048]: |
| 266 | + |
| 267 | + test_one_config(dtype, sched_type, mem_scope, num_vectors_per_tensor) |
| 268 | + |
| 269 | + # Report our progress. |
| 270 | + br.dump(sys.stdout) |
| 271 | + |
| 272 | + print("-" * 80) |
| 273 | + print(f"OUTPUT DIRECTORY: {host_output_dir}") |
| 274 | + print("-" * 80) |
| 275 | + print() |
| 276 | + |
| 277 | + tabular_output_filename = os.path.join(host_output_dir, "benchmark-results.csv") |
| 278 | + with open(tabular_output_filename, "w") as csv_file: |
| 279 | + br.dump(csv_file) |
| 280 | + print(f"BENCHMARK RESULTS FILE: {tabular_output_filename}") |
| 281 | + |
| 282 | + if br.num_failures() > 0: |
| 283 | + pytest.fail("At least one benchmark configuration failed", pytrace=False) |
0 commit comments