diff --git a/R/pkg/DESCRIPTION b/R/pkg/DESCRIPTION index 20433362459d9..c141baa51b8cb 100644 --- a/R/pkg/DESCRIPTION +++ b/R/pkg/DESCRIPTION @@ -11,7 +11,7 @@ Authors@R: c(person("Shivaram", "Venkataraman", role = c("aut", "cre"), email = "felixcheung@apache.org"), person(family = "The Apache Software Foundation", role = c("aut", "cph"))) License: Apache License (== 2.0) -URL: https://www.apache.org/ https://spark.apache.org/ +URL: https://www.apache.org https://spark.apache.org BugReports: https://spark.apache.org/contributing.html SystemRequirements: Java (>= 8, < 12) Depends: diff --git a/R/pkg/R/DataFrame.R b/R/pkg/R/DataFrame.R index 8ca338f09969b..72d96151f6371 100644 --- a/R/pkg/R/DataFrame.R +++ b/R/pkg/R/DataFrame.R @@ -880,7 +880,7 @@ setMethod("toJSON", #' Save the contents of SparkDataFrame as a JSON file #' -#' Save the contents of a SparkDataFrame as a JSON file (\href{http://jsonlines.org/}{ +#' Save the contents of a SparkDataFrame as a JSON file (\href{https://jsonlines.org/}{ #' JSON Lines text format or newline-delimited JSON}). Files written out #' with this method can be read back in as a SparkDataFrame using read.json(). #' diff --git a/R/pkg/R/SQLContext.R b/R/pkg/R/SQLContext.R index 5ed0481f33d8f..14262e1a74ab0 100644 --- a/R/pkg/R/SQLContext.R +++ b/R/pkg/R/SQLContext.R @@ -374,7 +374,7 @@ setMethod("toDF", signature(x = "RDD"), #' Create a SparkDataFrame from a JSON file. #' #' Loads a JSON file, returning the result as a SparkDataFrame -#' By default, (\href{http://jsonlines.org/}{JSON Lines text format or newline-delimited JSON} +#' By default, (\href{https://jsonlines.org/}{JSON Lines text format or newline-delimited JSON} #' ) is supported. For JSON (one record per file), set a named property \code{multiLine} to #' \code{TRUE}. #' It goes through the entire dataset once to determine the schema. diff --git a/R/pkg/R/install.R b/R/pkg/R/install.R index 5bc5ae07c5f03..bbb9188cd083f 100644 --- a/R/pkg/R/install.R +++ b/R/pkg/R/install.R @@ -39,11 +39,11 @@ #' version number in the format of "x.y" where x and y are integer. #' If \code{hadoopVersion = "without"}, "Hadoop free" build is installed. #' See -#' \href{http://spark.apache.org/docs/latest/hadoop-provided.html}{ +#' \href{https://spark.apache.org/docs/latest/hadoop-provided.html}{ #' "Hadoop Free" Build} for more information. #' Other patched version names can also be used, e.g. \code{"cdh4"} #' @param mirrorUrl base URL of the repositories to use. The directory layout should follow -#' \href{http://www.apache.org/dyn/closer.lua/spark/}{Apache mirrors}. +#' \href{https://www.apache.org/dyn/closer.lua/spark/}{Apache mirrors}. #' @param localDir a local directory where Spark is installed. The directory contains #' version-specific folders of Spark packages. Default is path to #' the cache directory: @@ -64,7 +64,7 @@ #'} #' @note install.spark since 2.1.0 #' @seealso See available Hadoop versions: -#' \href{http://spark.apache.org/downloads.html}{Apache Spark} +#' \href{https://spark.apache.org/downloads.html}{Apache Spark} install.spark <- function(hadoopVersion = "2.7", mirrorUrl = NULL, localDir = NULL, overwrite = FALSE) { sparkHome <- Sys.getenv("SPARK_HOME") diff --git a/R/pkg/R/mllib_classification.R b/R/pkg/R/mllib_classification.R index ec83b6bd406a7..71ebe4e26ef63 100644 --- a/R/pkg/R/mllib_classification.R +++ b/R/pkg/R/mllib_classification.R @@ -425,7 +425,7 @@ setMethod("write.ml", signature(object = "LogisticRegressionModel", path = "char #' predictions on new data, and \code{write.ml}/\code{read.ml} to save/load fitted models. #' Only categorical data is supported. #' For more details, see -#' \href{http://spark.apache.org/docs/latest/ml-classification-regression.html}{ +#' \href{https://spark.apache.org/docs/latest/ml-classification-regression.html}{ #' Multilayer Perceptron} #' #' @param data a \code{SparkDataFrame} of observations and labels for model fitting. @@ -574,7 +574,7 @@ setMethod("write.ml", signature(object = "MultilayerPerceptronClassificationMode #' @rdname spark.naiveBayes #' @aliases spark.naiveBayes,SparkDataFrame,formula-method #' @name spark.naiveBayes -#' @seealso e1071: \url{https://cran.r-project.org/package=e1071} +#' @seealso e1071: \url{https://cran.r-project.org/web/packages/e1071/index.html} #' @examples #' \dontrun{ #' data <- as.data.frame(UCBAdmissions) diff --git a/R/pkg/R/mllib_clustering.R b/R/pkg/R/mllib_clustering.R index 8bc15353465d8..ff7cbd8fc9b74 100644 --- a/R/pkg/R/mllib_clustering.R +++ b/R/pkg/R/mllib_clustering.R @@ -204,7 +204,7 @@ setMethod("write.ml", signature(object = "BisectingKMeansModel", path = "charact #' @return \code{spark.gaussianMixture} returns a fitted multivariate gaussian mixture model. #' @rdname spark.gaussianMixture #' @name spark.gaussianMixture -#' @seealso mixtools: \url{https://cran.r-project.org/package=mixtools} +#' @seealso mixtools: \url{https://cran.r-project.org/web/packages/mixtools/index.html} #' @examples #' \dontrun{ #' sparkR.session() @@ -483,7 +483,7 @@ setMethod("write.ml", signature(object = "KMeansModel", path = "character"), #' @return \code{spark.lda} returns a fitted Latent Dirichlet Allocation model. #' @rdname spark.lda #' @aliases spark.lda,SparkDataFrame-method -#' @seealso topicmodels: \url{https://cran.r-project.org/package=topicmodels} +#' @seealso topicmodels: \url{https://cran.r-project.org/web/packages/topicmodels/index.html} #' @examples #' \dontrun{ #' text <- read.df("data/mllib/sample_lda_libsvm_data.txt", source = "libsvm") diff --git a/R/pkg/R/mllib_recommendation.R b/R/pkg/R/mllib_recommendation.R index d238ff93ed245..87a1bc991f812 100644 --- a/R/pkg/R/mllib_recommendation.R +++ b/R/pkg/R/mllib_recommendation.R @@ -30,7 +30,7 @@ setClass("ALSModel", representation(jobj = "jobj")) #' to make predictions on new data, and \code{write.ml}/\code{read.ml} to save/load fitted models. #' #' For more details, see -#' \href{http://spark.apache.org/docs/latest/ml-collaborative-filtering.html}{MLlib: +#' \href{https://spark.apache.org/docs/latest/ml-collaborative-filtering.html}{MLlib: #' Collaborative Filtering}. #' #' @param data a SparkDataFrame for training. diff --git a/R/pkg/R/mllib_regression.R b/R/pkg/R/mllib_regression.R index b2228a141689b..db9f367407df3 100644 --- a/R/pkg/R/mllib_regression.R +++ b/R/pkg/R/mllib_regression.R @@ -475,7 +475,7 @@ setMethod("write.ml", signature(object = "IsotonicRegressionModel", path = "char #' @param ... additional arguments passed to the method. #' @return \code{spark.survreg} returns a fitted AFT survival regression model. #' @rdname spark.survreg -#' @seealso survival: \url{https://cran.r-project.org/package=survival} +#' @seealso survival: \url{https://cran.r-project.org/web/packages/survival/index.html} #' @examples #' \dontrun{ #' df <- createDataFrame(ovarian) diff --git a/R/pkg/R/mllib_stat.R b/R/pkg/R/mllib_stat.R index 6db4d5d4831dd..f82fb589bb5a5 100644 --- a/R/pkg/R/mllib_stat.R +++ b/R/pkg/R/mllib_stat.R @@ -49,7 +49,7 @@ setClass("KSTest", representation(jobj = "jobj")) #' @rdname spark.kstest #' @aliases spark.kstest,SparkDataFrame-method #' @name spark.kstest -#' @seealso \href{http://spark.apache.org/docs/latest/mllib-statistics.html#hypothesis-testing}{ +#' @seealso \href{https://spark.apache.org/docs/latest/mllib-statistics.html#hypothesis-testing}{ #' MLlib: Hypothesis Testing} #' @examples #' \dontrun{ diff --git a/R/pkg/R/mllib_tree.R b/R/pkg/R/mllib_tree.R index b5a014b0a3cfd..f3192ee9b1382 100644 --- a/R/pkg/R/mllib_tree.R +++ b/R/pkg/R/mllib_tree.R @@ -127,9 +127,9 @@ print.summary.decisionTree <- function(x) { #' \code{write.ml}/\code{read.ml} to save/load fitted models. #' For more details, see # nolint start -#' \href{http://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-tree-regression}{ +#' \href{https://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-tree-regression}{ #' GBT Regression} and -#' \href{http://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-tree-classifier}{ +#' \href{https://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-tree-classifier}{ #' GBT Classification} # nolint end #' @@ -343,9 +343,9 @@ setMethod("write.ml", signature(object = "GBTClassificationModel", path = "chara #' save/load fitted models. #' For more details, see # nolint start -#' \href{http://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-regression}{ +#' \href{https://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-regression}{ #' Random Forest Regression} and -#' \href{http://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-classifier}{ +#' \href{https://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-classifier}{ #' Random Forest Classification} # nolint end #' @@ -568,9 +568,9 @@ setMethod("write.ml", signature(object = "RandomForestClassificationModel", path #' save/load fitted models. #' For more details, see # nolint start -#' \href{http://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-regression}{ +#' \href{https://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-regression}{ #' Decision Tree Regression} and -#' \href{http://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-classifier}{ +#' \href{https://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-classifier}{ #' Decision Tree Classification} # nolint end #' diff --git a/R/pkg/R/stats.R b/R/pkg/R/stats.R index 7252351ebebb2..0aabceef226e3 100644 --- a/R/pkg/R/stats.R +++ b/R/pkg/R/stats.R @@ -109,7 +109,8 @@ setMethod("corr", #' #' Finding frequent items for columns, possibly with false positives. #' Using the frequent element count algorithm described in -#' \url{https://doi.org/10.1145/762471.762473}, proposed by Karp, Schenker, and Papadimitriou. +#' \url{https://dl.acm.org/doi/10.1145/762471.762473}, proposed by Karp, Schenker, +#' and Papadimitriou. #' #' @param x A SparkDataFrame. #' @param cols A vector column names to search frequent items in. diff --git a/R/pkg/vignettes/sparkr-vignettes.Rmd b/R/pkg/vignettes/sparkr-vignettes.Rmd index a0608748696a3..3177b54dc5fac 100644 --- a/R/pkg/vignettes/sparkr-vignettes.Rmd +++ b/R/pkg/vignettes/sparkr-vignettes.Rmd @@ -1007,7 +1007,7 @@ perplexity #### Alternating Least Squares -`spark.als` learns latent factors in [collaborative filtering](https://en.wikipedia.org/wiki/Recommender_system#Collaborative_filtering) via [alternating least squares](https://dl.acm.org/citation.cfm?id=1608614). +`spark.als` learns latent factors in [collaborative filtering](https://en.wikipedia.org/wiki/Recommender_system#Collaborative_filtering) via [alternating least squares](https://dl.acm.org/doi/10.1109/MC.2009.263). There are multiple options that can be configured in `spark.als`, including `rank`, `reg`, and `nonnegative`. For a complete list, refer to the help file.