diff --git a/LICENSE b/LICENSE index 6b169b1447f14..af2cdd275d28d 100644 --- a/LICENSE +++ b/LICENSE @@ -229,7 +229,7 @@ BSD 3-Clause ------------ python/lib/py4j-*-src.zip -python/pyspark/cloudpickle.py +python/pyspark/cloudpickle/*.py python/pyspark/join.py core/src/main/resources/org/apache/spark/ui/static/d3.min.js diff --git a/dev/.rat-excludes b/dev/.rat-excludes index 326e561529073..db6a4ce644edd 100644 --- a/dev/.rat-excludes +++ b/dev/.rat-excludes @@ -47,8 +47,8 @@ jsonFormatter.min.js .*json .*data .*log -pyspark-coverage-site/ -cloudpickle.py +pyspark-coverage-site/* +cloudpickle/* heapq3.py join.py SparkExprTyper.scala diff --git a/dev/tox.ini b/dev/tox.ini index 3ee13c09b5de7..ba5df084daad7 100644 --- a/dev/tox.ini +++ b/dev/tox.ini @@ -16,4 +16,4 @@ [pycodestyle] ignore=E226,E241,E305,E402,E722,E731,E741,W503,W504 max-line-length=100 -exclude=cloudpickle.py,heapq3.py,shared.py,python/docs/conf.py,work/*/*.py,python/.eggs/*,dist/*,.git/* +exclude=python/pyspark/cloudpickle/*.py,heapq3.py,shared.py,python/docs/conf.py,work/*/*.py,python/.eggs/*,dist/*,.git/* diff --git a/python/pyspark/cloudpickle.py b/python/pyspark/cloudpickle.py deleted file mode 100644 index af49c77a2d98c..0000000000000 --- a/python/pyspark/cloudpickle.py +++ /dev/null @@ -1,1362 +0,0 @@ -""" -This class is defined to override standard pickle functionality - -The goals of it follow: --Serialize lambdas and nested functions to compiled byte code --Deal with main module correctly --Deal with other non-serializable objects - -It does not include an unpickler, as standard python unpickling suffices. - -This module was extracted from the `cloud` package, developed by `PiCloud, Inc. -`_. - -Copyright (c) 2012, Regents of the University of California. -Copyright (c) 2009 `PiCloud, Inc. `_. -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions -are met: - * Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - * Neither the name of the University of California, Berkeley nor the - names of its contributors may be used to endorse or promote - products derived from this software without specific prior written - permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED -TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING -NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -""" -from __future__ import print_function - -import dis -from functools import partial -import io -import itertools -import logging -import opcode -import operator -import pickle -import struct -import sys -import traceback -import types -import weakref -import uuid -import threading - - -try: - from enum import Enum -except ImportError: - Enum = None - -# cloudpickle is meant for inter process communication: we expect all -# communicating processes to run the same Python version hence we favor -# communication speed over compatibility: -DEFAULT_PROTOCOL = pickle.HIGHEST_PROTOCOL - -# Track the provenance of reconstructed dynamic classes to make it possible to -# recontruct instances from the matching singleton class definition when -# appropriate and preserve the usual "isinstance" semantics of Python objects. -_DYNAMIC_CLASS_TRACKER_BY_CLASS = weakref.WeakKeyDictionary() -_DYNAMIC_CLASS_TRACKER_BY_ID = weakref.WeakValueDictionary() -_DYNAMIC_CLASS_TRACKER_LOCK = threading.Lock() - -if sys.version_info[0] < 3: # pragma: no branch - from pickle import Pickler - try: - from cStringIO import StringIO - except ImportError: - from StringIO import StringIO - string_types = (basestring,) # noqa - PY3 = False - PY2 = True - PY2_WRAPPER_DESCRIPTOR_TYPE = type(object.__init__) - PY2_METHOD_WRAPPER_TYPE = type(object.__eq__) - PY2_CLASS_DICT_SKIP_PICKLE_METHOD_TYPE = (PY2_METHOD_WRAPPER_TYPE, - PY2_WRAPPER_DESCRIPTOR_TYPE) -else: - types.ClassType = type - from pickle import _Pickler as Pickler - from io import BytesIO as StringIO - string_types = (str,) - PY3 = True - PY2 = False - - -def _ensure_tracking(class_def): - with _DYNAMIC_CLASS_TRACKER_LOCK: - class_tracker_id = _DYNAMIC_CLASS_TRACKER_BY_CLASS.get(class_def) - if class_tracker_id is None: - class_tracker_id = uuid.uuid4().hex - _DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id - _DYNAMIC_CLASS_TRACKER_BY_ID[class_tracker_id] = class_def - return class_tracker_id - - -def _lookup_class_or_track(class_tracker_id, class_def): - if class_tracker_id is not None: - with _DYNAMIC_CLASS_TRACKER_LOCK: - class_def = _DYNAMIC_CLASS_TRACKER_BY_ID.setdefault( - class_tracker_id, class_def) - _DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id - return class_def - - -def _make_cell_set_template_code(): - """Get the Python compiler to emit LOAD_FAST(arg); STORE_DEREF - - Notes - ----- - In Python 3, we could use an easier function: - - .. code-block:: python - - def f(): - cell = None - - def _stub(value): - nonlocal cell - cell = value - - return _stub - - _cell_set_template_code = f().__code__ - - This function is _only_ a LOAD_FAST(arg); STORE_DEREF, but that is - invalid syntax on Python 2. If we use this function we also don't need - to do the weird freevars/cellvars swap below - """ - def inner(value): - lambda: cell # make ``cell`` a closure so that we get a STORE_DEREF - cell = value - - co = inner.__code__ - - # NOTE: we are marking the cell variable as a free variable intentionally - # so that we simulate an inner function instead of the outer function. This - # is what gives us the ``nonlocal`` behavior in a Python 2 compatible way. - if PY2: # pragma: no branch - return types.CodeType( - co.co_argcount, - co.co_nlocals, - co.co_stacksize, - co.co_flags, - co.co_code, - co.co_consts, - co.co_names, - co.co_varnames, - co.co_filename, - co.co_name, - co.co_firstlineno, - co.co_lnotab, - co.co_cellvars, # this is the trickery - (), - ) - else: - if hasattr(types.CodeType, "co_posonlyargcount"): # pragma: no branch - return types.CodeType( - co.co_argcount, - co.co_posonlyargcount, # Python3.8 with PEP570 - co.co_kwonlyargcount, - co.co_nlocals, - co.co_stacksize, - co.co_flags, - co.co_code, - co.co_consts, - co.co_names, - co.co_varnames, - co.co_filename, - co.co_name, - co.co_firstlineno, - co.co_lnotab, - co.co_cellvars, # this is the trickery - (), - ) - else: - return types.CodeType( - co.co_argcount, - co.co_kwonlyargcount, - co.co_nlocals, - co.co_stacksize, - co.co_flags, - co.co_code, - co.co_consts, - co.co_names, - co.co_varnames, - co.co_filename, - co.co_name, - co.co_firstlineno, - co.co_lnotab, - co.co_cellvars, # this is the trickery - (), - ) - -_cell_set_template_code = _make_cell_set_template_code() - - -def cell_set(cell, value): - """Set the value of a closure cell. - """ - return types.FunctionType( - _cell_set_template_code, - {}, - '_cell_set_inner', - (), - (cell,), - )(value) - - -# relevant opcodes -STORE_GLOBAL = opcode.opmap['STORE_GLOBAL'] -DELETE_GLOBAL = opcode.opmap['DELETE_GLOBAL'] -LOAD_GLOBAL = opcode.opmap['LOAD_GLOBAL'] -GLOBAL_OPS = (STORE_GLOBAL, DELETE_GLOBAL, LOAD_GLOBAL) -HAVE_ARGUMENT = dis.HAVE_ARGUMENT -EXTENDED_ARG = dis.EXTENDED_ARG - - -def islambda(func): - return getattr(func, '__name__') == '' - - -_BUILTIN_TYPE_NAMES = {} -for k, v in types.__dict__.items(): - if type(v) is type: - _BUILTIN_TYPE_NAMES[v] = k - - -def _builtin_type(name): - return getattr(types, name) - - -def _make__new__factory(type_): - def _factory(): - return type_.__new__ - return _factory - - -# NOTE: These need to be module globals so that they're pickleable as globals. -_get_dict_new = _make__new__factory(dict) -_get_frozenset_new = _make__new__factory(frozenset) -_get_list_new = _make__new__factory(list) -_get_set_new = _make__new__factory(set) -_get_tuple_new = _make__new__factory(tuple) -_get_object_new = _make__new__factory(object) - -# Pre-defined set of builtin_function_or_method instances that can be -# serialized. -_BUILTIN_TYPE_CONSTRUCTORS = { - dict.__new__: _get_dict_new, - frozenset.__new__: _get_frozenset_new, - set.__new__: _get_set_new, - list.__new__: _get_list_new, - tuple.__new__: _get_tuple_new, - object.__new__: _get_object_new, -} - - -if sys.version_info < (3, 4): # pragma: no branch - def _walk_global_ops(code): - """ - Yield (opcode, argument number) tuples for all - global-referencing instructions in *code*. - """ - code = getattr(code, 'co_code', b'') - if PY2: # pragma: no branch - code = map(ord, code) - - n = len(code) - i = 0 - extended_arg = 0 - while i < n: - op = code[i] - i += 1 - if op >= HAVE_ARGUMENT: - oparg = code[i] + code[i + 1] * 256 + extended_arg - extended_arg = 0 - i += 2 - if op == EXTENDED_ARG: - extended_arg = oparg * 65536 - if op in GLOBAL_OPS: - yield op, oparg - -else: - def _walk_global_ops(code): - """ - Yield (opcode, argument number) tuples for all - global-referencing instructions in *code*. - """ - for instr in dis.get_instructions(code): - op = instr.opcode - if op in GLOBAL_OPS: - yield op, instr.arg - - -def _extract_class_dict(cls): - """Retrieve a copy of the dict of a class without the inherited methods""" - clsdict = dict(cls.__dict__) # copy dict proxy to a dict - if len(cls.__bases__) == 1: - inherited_dict = cls.__bases__[0].__dict__ - else: - inherited_dict = {} - for base in reversed(cls.__bases__): - inherited_dict.update(base.__dict__) - to_remove = [] - for name, value in clsdict.items(): - try: - base_value = inherited_dict[name] - if value is base_value: - to_remove.append(name) - elif PY2: - # backward compat for Python 2 - if hasattr(value, "im_func"): - if value.im_func is getattr(base_value, "im_func", None): - to_remove.append(name) - elif isinstance(value, PY2_CLASS_DICT_SKIP_PICKLE_METHOD_TYPE): - # On Python 2 we have no way to pickle those specific - # methods types nor to check that they are actually - # inherited. So we assume that they are always inherited - # from builtin types. - to_remove.append(name) - except KeyError: - pass - for name in to_remove: - clsdict.pop(name) - return clsdict - - -class CloudPickler(Pickler): - - dispatch = Pickler.dispatch.copy() - - def __init__(self, file, protocol=None): - if protocol is None: - protocol = DEFAULT_PROTOCOL - Pickler.__init__(self, file, protocol=protocol) - # map ids to dictionary. used to ensure that functions can share global env - self.globals_ref = {} - - def dump(self, obj): - self.inject_addons() - try: - return Pickler.dump(self, obj) - except RuntimeError as e: - if 'recursion' in e.args[0]: - msg = """Could not pickle object as excessively deep recursion required.""" - raise pickle.PicklingError(msg) - else: - raise - - def save_memoryview(self, obj): - self.save(obj.tobytes()) - - dispatch[memoryview] = save_memoryview - - if PY2: # pragma: no branch - def save_buffer(self, obj): - self.save(str(obj)) - - dispatch[buffer] = save_buffer # noqa: F821 'buffer' was removed in Python 3 - - def save_module(self, obj): - """ - Save a module as an import - """ - if _is_dynamic(obj): - self.save_reduce(dynamic_subimport, (obj.__name__, vars(obj)), - obj=obj) - else: - self.save_reduce(subimport, (obj.__name__,), obj=obj) - - dispatch[types.ModuleType] = save_module - - def save_codeobject(self, obj): - """ - Save a code object - """ - if PY3: # pragma: no branch - if hasattr(obj, "co_posonlyargcount"): # pragma: no branch - args = ( - obj.co_argcount, obj.co_posonlyargcount, - obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, - obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, - obj.co_varnames, obj.co_filename, obj.co_name, - obj.co_firstlineno, obj.co_lnotab, obj.co_freevars, - obj.co_cellvars - ) - else: - args = ( - obj.co_argcount, obj.co_kwonlyargcount, obj.co_nlocals, - obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, - obj.co_names, obj.co_varnames, obj.co_filename, - obj.co_name, obj.co_firstlineno, obj.co_lnotab, - obj.co_freevars, obj.co_cellvars - ) - else: - args = ( - obj.co_argcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, - obj.co_consts, obj.co_names, obj.co_varnames, obj.co_filename, obj.co_name, - obj.co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars - ) - self.save_reduce(types.CodeType, args, obj=obj) - - dispatch[types.CodeType] = save_codeobject - - def save_function(self, obj, name=None): - """ Registered with the dispatch to handle all function types. - - Determines what kind of function obj is (e.g. lambda, defined at - interactive prompt, etc) and handles the pickling appropriately. - """ - try: - should_special_case = obj in _BUILTIN_TYPE_CONSTRUCTORS - except TypeError: - # Methods of builtin types aren't hashable in python 2. - should_special_case = False - - if should_special_case: - # We keep a special-cased cache of built-in type constructors at - # global scope, because these functions are structured very - # differently in different python versions and implementations (for - # example, they're instances of types.BuiltinFunctionType in - # CPython, but they're ordinary types.FunctionType instances in - # PyPy). - # - # If the function we've received is in that cache, we just - # serialize it as a lookup into the cache. - return self.save_reduce(_BUILTIN_TYPE_CONSTRUCTORS[obj], (), obj=obj) - - write = self.write - - if name is None: - name = obj.__name__ - try: - # whichmodule() could fail, see - # https://bitbucket.org/gutworth/six/issues/63/importing-six-breaks-pickling - modname = pickle.whichmodule(obj, name) - except Exception: - modname = None - # print('which gives %s %s %s' % (modname, obj, name)) - try: - themodule = sys.modules[modname] - except KeyError: - # eval'd items such as namedtuple give invalid items for their function __module__ - modname = '__main__' - - if modname == '__main__': - themodule = None - - try: - lookedup_by_name = getattr(themodule, name, None) - except Exception: - lookedup_by_name = None - - if themodule: - if lookedup_by_name is obj: - return self.save_global(obj, name) - - # a builtin_function_or_method which comes in as an attribute of some - # object (e.g., itertools.chain.from_iterable) will end - # up with modname "__main__" and so end up here. But these functions - # have no __code__ attribute in CPython, so the handling for - # user-defined functions below will fail. - # So we pickle them here using save_reduce; have to do it differently - # for different python versions. - if not hasattr(obj, '__code__'): - if PY3: # pragma: no branch - rv = obj.__reduce_ex__(self.proto) - else: - if hasattr(obj, '__self__'): - rv = (getattr, (obj.__self__, name)) - else: - raise pickle.PicklingError("Can't pickle %r" % obj) - return self.save_reduce(obj=obj, *rv) - - # if func is lambda, def'ed at prompt, is in main, or is nested, then - # we'll pickle the actual function object rather than simply saving a - # reference (as is done in default pickler), via save_function_tuple. - if (islambda(obj) - or getattr(obj.__code__, 'co_filename', None) == '' - or themodule is None): - self.save_function_tuple(obj) - return - else: - # func is nested - if lookedup_by_name is None or lookedup_by_name is not obj: - self.save_function_tuple(obj) - return - - if obj.__dict__: - # essentially save_reduce, but workaround needed to avoid recursion - self.save(_restore_attr) - write(pickle.MARK + pickle.GLOBAL + modname + '\n' + name + '\n') - self.memoize(obj) - self.save(obj.__dict__) - write(pickle.TUPLE + pickle.REDUCE) - else: - write(pickle.GLOBAL + modname + '\n' + name + '\n') - self.memoize(obj) - - dispatch[types.FunctionType] = save_function - - def _save_subimports(self, code, top_level_dependencies): - """ - Save submodules used by a function but not listed in its globals. - - In the example below: - - ``` - import concurrent.futures - import cloudpickle - - - def func(): - x = concurrent.futures.ThreadPoolExecutor - - - if __name__ == '__main__': - cloudpickle.dumps(func) - ``` - - the globals extracted by cloudpickle in the function's state include - the concurrent module, but not its submodule (here, - concurrent.futures), which is the module used by func. - - To ensure that calling the depickled function does not raise an - AttributeError, this function looks for any currently loaded submodule - that the function uses and whose parent is present in the function - globals, and saves it before saving the function. - """ - - # check if any known dependency is an imported package - for x in top_level_dependencies: - if isinstance(x, types.ModuleType) and hasattr(x, '__package__') and x.__package__: - # check if the package has any currently loaded sub-imports - prefix = x.__name__ + '.' - # A concurrent thread could mutate sys.modules, - # make sure we iterate over a copy to avoid exceptions - for name in list(sys.modules): - # Older versions of pytest will add a "None" module to sys.modules. - if name is not None and name.startswith(prefix): - # check whether the function can address the sub-module - tokens = set(name[len(prefix):].split('.')) - if not tokens - set(code.co_names): - # ensure unpickler executes this import - self.save(sys.modules[name]) - # then discards the reference to it - self.write(pickle.POP) - - def _save_dynamic_enum(self, obj, clsdict): - """Special handling for dynamic Enum subclasses - - Use a dedicated Enum constructor (inspired by EnumMeta.__call__) as the - EnumMeta metaclass has complex initialization that makes the Enum - subclasses hold references to their own instances. - """ - members = dict((e.name, e.value) for e in obj) - - # Python 2.7 with enum34 can have no qualname: - qualname = getattr(obj, "__qualname__", None) - - self.save_reduce(_make_skeleton_enum, - (obj.__bases__, obj.__name__, qualname, members, - obj.__module__, _ensure_tracking(obj), None), - obj=obj) - - # Cleanup the clsdict that will be passed to _rehydrate_skeleton_class: - # Those attributes are already handled by the metaclass. - for attrname in ["_generate_next_value_", "_member_names_", - "_member_map_", "_member_type_", - "_value2member_map_"]: - clsdict.pop(attrname, None) - for member in members: - clsdict.pop(member) - - def save_dynamic_class(self, obj): - """Save a class that can't be stored as module global. - - This method is used to serialize classes that are defined inside - functions, or that otherwise can't be serialized as attribute lookups - from global modules. - """ - clsdict = _extract_class_dict(obj) - clsdict.pop('__weakref__', None) - - # For ABCMeta in python3.7+, remove _abc_impl as it is not picklable. - # This is a fix which breaks the cache but this only makes the first - # calls to issubclass slower. - if "_abc_impl" in clsdict: - import abc - (registry, _, _, _) = abc._get_dump(obj) - clsdict["_abc_impl"] = [subclass_weakref() - for subclass_weakref in registry] - - # On PyPy, __doc__ is a readonly attribute, so we need to include it in - # the initial skeleton class. This is safe because we know that the - # doc can't participate in a cycle with the original class. - type_kwargs = {'__doc__': clsdict.pop('__doc__', None)} - - if hasattr(obj, "__slots__"): - type_kwargs['__slots__'] = obj.__slots__ - # pickle string length optimization: member descriptors of obj are - # created automatically from obj's __slots__ attribute, no need to - # save them in obj's state - if isinstance(obj.__slots__, string_types): - clsdict.pop(obj.__slots__) - else: - for k in obj.__slots__: - clsdict.pop(k, None) - - # If type overrides __dict__ as a property, include it in the type - # kwargs. In Python 2, we can't set this attribute after construction. - __dict__ = clsdict.pop('__dict__', None) - if isinstance(__dict__, property): - type_kwargs['__dict__'] = __dict__ - - save = self.save - write = self.write - - # We write pickle instructions explicitly here to handle the - # possibility that the type object participates in a cycle with its own - # __dict__. We first write an empty "skeleton" version of the class and - # memoize it before writing the class' __dict__ itself. We then write - # instructions to "rehydrate" the skeleton class by restoring the - # attributes from the __dict__. - # - # A type can appear in a cycle with its __dict__ if an instance of the - # type appears in the type's __dict__ (which happens for the stdlib - # Enum class), or if the type defines methods that close over the name - # of the type, (which is common for Python 2-style super() calls). - - # Push the rehydration function. - save(_rehydrate_skeleton_class) - - # Mark the start of the args tuple for the rehydration function. - write(pickle.MARK) - - # Create and memoize an skeleton class with obj's name and bases. - if Enum is not None and issubclass(obj, Enum): - # Special handling of Enum subclasses - self._save_dynamic_enum(obj, clsdict) - else: - # "Regular" class definition: - tp = type(obj) - self.save_reduce(_make_skeleton_class, - (tp, obj.__name__, obj.__bases__, type_kwargs, - _ensure_tracking(obj), None), - obj=obj) - - # Now save the rest of obj's __dict__. Any references to obj - # encountered while saving will point to the skeleton class. - save(clsdict) - - # Write a tuple of (skeleton_class, clsdict). - write(pickle.TUPLE) - - # Call _rehydrate_skeleton_class(skeleton_class, clsdict) - write(pickle.REDUCE) - - def save_function_tuple(self, func): - """ Pickles an actual func object. - - A func comprises: code, globals, defaults, closure, and dict. We - extract and save these, injecting reducing functions at certain points - to recreate the func object. Keep in mind that some of these pieces - can contain a ref to the func itself. Thus, a naive save on these - pieces could trigger an infinite loop of save's. To get around that, - we first create a skeleton func object using just the code (this is - safe, since this won't contain a ref to the func), and memoize it as - soon as it's created. The other stuff can then be filled in later. - """ - if is_tornado_coroutine(func): - self.save_reduce(_rebuild_tornado_coroutine, (func.__wrapped__,), - obj=func) - return - - save = self.save - write = self.write - - code, f_globals, defaults, closure_values, dct, base_globals = self.extract_func_data(func) - - save(_fill_function) # skeleton function updater - write(pickle.MARK) # beginning of tuple that _fill_function expects - - self._save_subimports( - code, - itertools.chain(f_globals.values(), closure_values or ()), - ) - - # create a skeleton function object and memoize it - save(_make_skel_func) - save(( - code, - len(closure_values) if closure_values is not None else -1, - base_globals, - )) - write(pickle.REDUCE) - self.memoize(func) - - # save the rest of the func data needed by _fill_function - state = { - 'globals': f_globals, - 'defaults': defaults, - 'dict': dct, - 'closure_values': closure_values, - 'module': func.__module__, - 'name': func.__name__, - 'doc': func.__doc__, - } - if hasattr(func, '__annotations__') and sys.version_info >= (3, 7): - state['annotations'] = func.__annotations__ - if hasattr(func, '__qualname__'): - state['qualname'] = func.__qualname__ - if hasattr(func, '__kwdefaults__'): - state['kwdefaults'] = func.__kwdefaults__ - save(state) - write(pickle.TUPLE) - write(pickle.REDUCE) # applies _fill_function on the tuple - - _extract_code_globals_cache = ( - weakref.WeakKeyDictionary() - if not hasattr(sys, "pypy_version_info") - else {}) - - @classmethod - def extract_code_globals(cls, co): - """ - Find all globals names read or written to by codeblock co - """ - out_names = cls._extract_code_globals_cache.get(co) - if out_names is None: - try: - names = co.co_names - except AttributeError: - # PyPy "builtin-code" object - out_names = set() - else: - out_names = {names[oparg] for _, oparg in _walk_global_ops(co)} - - # see if nested function have any global refs - if co.co_consts: - for const in co.co_consts: - if type(const) is types.CodeType: - out_names |= cls.extract_code_globals(const) - - cls._extract_code_globals_cache[co] = out_names - - return out_names - - def extract_func_data(self, func): - """ - Turn the function into a tuple of data necessary to recreate it: - code, globals, defaults, closure_values, dict - """ - code = func.__code__ - - # extract all global ref's - func_global_refs = self.extract_code_globals(code) - - # process all variables referenced by global environment - f_globals = {} - for var in func_global_refs: - if var in func.__globals__: - f_globals[var] = func.__globals__[var] - - # defaults requires no processing - defaults = func.__defaults__ - - # process closure - closure = ( - list(map(_get_cell_contents, func.__closure__)) - if func.__closure__ is not None - else None - ) - - # save the dict - dct = func.__dict__ - - # base_globals represents the future global namespace of func at - # unpickling time. Looking it up and storing it in globals_ref allow - # functions sharing the same globals at pickling time to also - # share them once unpickled, at one condition: since globals_ref is - # an attribute of a Cloudpickler instance, and that a new CloudPickler is - # created each time pickle.dump or pickle.dumps is called, functions - # also need to be saved within the same invokation of - # cloudpickle.dump/cloudpickle.dumps (for example: cloudpickle.dumps([f1, f2])). There - # is no such limitation when using Cloudpickler.dump, as long as the - # multiple invokations are bound to the same Cloudpickler. - base_globals = self.globals_ref.setdefault(id(func.__globals__), {}) - - if base_globals == {}: - # Add module attributes used to resolve relative imports - # instructions inside func. - for k in ["__package__", "__name__", "__path__", "__file__"]: - # Some built-in functions/methods such as object.__new__ have - # their __globals__ set to None in PyPy - if func.__globals__ is not None and k in func.__globals__: - base_globals[k] = func.__globals__[k] - - return (code, f_globals, defaults, closure, dct, base_globals) - - def save_builtin_function(self, obj): - if obj.__module__ == "__builtin__": - return self.save_global(obj) - return self.save_function(obj) - - dispatch[types.BuiltinFunctionType] = save_builtin_function - - def save_global(self, obj, name=None, pack=struct.pack): - """ - Save a "global". - - The name of this method is somewhat misleading: all types get - dispatched here. - """ - if obj is type(None): - return self.save_reduce(type, (None,), obj=obj) - elif obj is type(Ellipsis): - return self.save_reduce(type, (Ellipsis,), obj=obj) - elif obj is type(NotImplemented): - return self.save_reduce(type, (NotImplemented,), obj=obj) - - if obj.__module__ == "__main__": - return self.save_dynamic_class(obj) - - try: - return Pickler.save_global(self, obj, name=name) - except Exception: - if obj.__module__ == "__builtin__" or obj.__module__ == "builtins": - if obj in _BUILTIN_TYPE_NAMES: - return self.save_reduce( - _builtin_type, (_BUILTIN_TYPE_NAMES[obj],), obj=obj) - - typ = type(obj) - if typ is not obj and isinstance(obj, (type, types.ClassType)): - return self.save_dynamic_class(obj) - - raise - - dispatch[type] = save_global - dispatch[types.ClassType] = save_global - - def save_instancemethod(self, obj): - # Memoization rarely is ever useful due to python bounding - if obj.__self__ is None: - self.save_reduce(getattr, (obj.im_class, obj.__name__)) - else: - if PY3: # pragma: no branch - self.save_reduce(types.MethodType, (obj.__func__, obj.__self__), obj=obj) - else: - self.save_reduce(types.MethodType, (obj.__func__, obj.__self__, obj.__self__.__class__), - obj=obj) - - dispatch[types.MethodType] = save_instancemethod - - def save_inst(self, obj): - """Inner logic to save instance. Based off pickle.save_inst""" - cls = obj.__class__ - - # Try the dispatch table (pickle module doesn't do it) - f = self.dispatch.get(cls) - if f: - f(self, obj) # Call unbound method with explicit self - return - - memo = self.memo - write = self.write - save = self.save - - if hasattr(obj, '__getinitargs__'): - args = obj.__getinitargs__() - len(args) # XXX Assert it's a sequence - pickle._keep_alive(args, memo) - else: - args = () - - write(pickle.MARK) - - if self.bin: - save(cls) - for arg in args: - save(arg) - write(pickle.OBJ) - else: - for arg in args: - save(arg) - write(pickle.INST + cls.__module__ + '\n' + cls.__name__ + '\n') - - self.memoize(obj) - - try: - getstate = obj.__getstate__ - except AttributeError: - stuff = obj.__dict__ - else: - stuff = getstate() - pickle._keep_alive(stuff, memo) - save(stuff) - write(pickle.BUILD) - - if PY2: # pragma: no branch - dispatch[types.InstanceType] = save_inst - - def save_property(self, obj): - # properties not correctly saved in python - self.save_reduce(property, (obj.fget, obj.fset, obj.fdel, obj.__doc__), obj=obj) - - dispatch[property] = save_property - - def save_classmethod(self, obj): - orig_func = obj.__func__ - self.save_reduce(type(obj), (orig_func,), obj=obj) - - dispatch[classmethod] = save_classmethod - dispatch[staticmethod] = save_classmethod - - def save_itemgetter(self, obj): - """itemgetter serializer (needed for namedtuple support)""" - class Dummy: - def __getitem__(self, item): - return item - items = obj(Dummy()) - if not isinstance(items, tuple): - items = (items,) - return self.save_reduce(operator.itemgetter, items) - - if type(operator.itemgetter) is type: - dispatch[operator.itemgetter] = save_itemgetter - - def save_attrgetter(self, obj): - """attrgetter serializer""" - class Dummy(object): - def __init__(self, attrs, index=None): - self.attrs = attrs - self.index = index - def __getattribute__(self, item): - attrs = object.__getattribute__(self, "attrs") - index = object.__getattribute__(self, "index") - if index is None: - index = len(attrs) - attrs.append(item) - else: - attrs[index] = ".".join([attrs[index], item]) - return type(self)(attrs, index) - attrs = [] - obj(Dummy(attrs)) - return self.save_reduce(operator.attrgetter, tuple(attrs)) - - if type(operator.attrgetter) is type: - dispatch[operator.attrgetter] = save_attrgetter - - def save_file(self, obj): - """Save a file""" - try: - import StringIO as pystringIO # we can't use cStringIO as it lacks the name attribute - except ImportError: - import io as pystringIO - - if not hasattr(obj, 'name') or not hasattr(obj, 'mode'): - raise pickle.PicklingError("Cannot pickle files that do not map to an actual file") - if obj is sys.stdout: - return self.save_reduce(getattr, (sys, 'stdout'), obj=obj) - if obj is sys.stderr: - return self.save_reduce(getattr, (sys, 'stderr'), obj=obj) - if obj is sys.stdin: - raise pickle.PicklingError("Cannot pickle standard input") - if obj.closed: - raise pickle.PicklingError("Cannot pickle closed files") - if hasattr(obj, 'isatty') and obj.isatty(): - raise pickle.PicklingError("Cannot pickle files that map to tty objects") - if 'r' not in obj.mode and '+' not in obj.mode: - raise pickle.PicklingError("Cannot pickle files that are not opened for reading: %s" % obj.mode) - - name = obj.name - - retval = pystringIO.StringIO() - - try: - # Read the whole file - curloc = obj.tell() - obj.seek(0) - contents = obj.read() - obj.seek(curloc) - except IOError: - raise pickle.PicklingError("Cannot pickle file %s as it cannot be read" % name) - retval.write(contents) - retval.seek(curloc) - - retval.name = name - self.save(retval) - self.memoize(obj) - - def save_ellipsis(self, obj): - self.save_reduce(_gen_ellipsis, ()) - - def save_not_implemented(self, obj): - self.save_reduce(_gen_not_implemented, ()) - - try: # Python 2 - dispatch[file] = save_file - except NameError: # Python 3 # pragma: no branch - dispatch[io.TextIOWrapper] = save_file - - dispatch[type(Ellipsis)] = save_ellipsis - dispatch[type(NotImplemented)] = save_not_implemented - - def save_weakset(self, obj): - self.save_reduce(weakref.WeakSet, (list(obj),)) - - dispatch[weakref.WeakSet] = save_weakset - - def save_logger(self, obj): - self.save_reduce(logging.getLogger, (obj.name,), obj=obj) - - dispatch[logging.Logger] = save_logger - - def save_root_logger(self, obj): - self.save_reduce(logging.getLogger, (), obj=obj) - - dispatch[logging.RootLogger] = save_root_logger - - if hasattr(types, "MappingProxyType"): # pragma: no branch - def save_mappingproxy(self, obj): - self.save_reduce(types.MappingProxyType, (dict(obj),), obj=obj) - - dispatch[types.MappingProxyType] = save_mappingproxy - - """Special functions for Add-on libraries""" - def inject_addons(self): - """Plug in system. Register additional pickling functions if modules already loaded""" - pass - - -# Tornado support - -def is_tornado_coroutine(func): - """ - Return whether *func* is a Tornado coroutine function. - Running coroutines are not supported. - """ - if 'tornado.gen' not in sys.modules: - return False - gen = sys.modules['tornado.gen'] - if not hasattr(gen, "is_coroutine_function"): - # Tornado version is too old - return False - return gen.is_coroutine_function(func) - - -def _rebuild_tornado_coroutine(func): - from tornado import gen - return gen.coroutine(func) - - -# Shorthands for legacy support - -def dump(obj, file, protocol=None): - """Serialize obj as bytes streamed into file - - protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to - pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed - between processes running the same Python version. - - Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure - compatibility with older versions of Python. - """ - CloudPickler(file, protocol=protocol).dump(obj) - - -def dumps(obj, protocol=None): - """Serialize obj as a string of bytes allocated in memory - - protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to - pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed - between processes running the same Python version. - - Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure - compatibility with older versions of Python. - """ - file = StringIO() - try: - cp = CloudPickler(file, protocol=protocol) - cp.dump(obj) - return file.getvalue() - finally: - file.close() - - -# including pickles unloading functions in this namespace -load = pickle.load -loads = pickle.loads - - -# hack for __import__ not working as desired -def subimport(name): - __import__(name) - return sys.modules[name] - - -def dynamic_subimport(name, vars): - mod = types.ModuleType(name) - mod.__dict__.update(vars) - return mod - - -# restores function attributes -def _restore_attr(obj, attr): - for key, val in attr.items(): - setattr(obj, key, val) - return obj - - -def _gen_ellipsis(): - return Ellipsis - - -def _gen_not_implemented(): - return NotImplemented - - -def _get_cell_contents(cell): - try: - return cell.cell_contents - except ValueError: - # sentinel used by ``_fill_function`` which will leave the cell empty - return _empty_cell_value - - -def instance(cls): - """Create a new instance of a class. - - Parameters - ---------- - cls : type - The class to create an instance of. - - Returns - ------- - instance : cls - A new instance of ``cls``. - """ - return cls() - - -@instance -class _empty_cell_value(object): - """sentinel for empty closures - """ - @classmethod - def __reduce__(cls): - return cls.__name__ - - -def _fill_function(*args): - """Fills in the rest of function data into the skeleton function object - - The skeleton itself is create by _make_skel_func(). - """ - if len(args) == 2: - func = args[0] - state = args[1] - elif len(args) == 5: - # Backwards compat for cloudpickle v0.4.0, after which the `module` - # argument was introduced - func = args[0] - keys = ['globals', 'defaults', 'dict', 'closure_values'] - state = dict(zip(keys, args[1:])) - elif len(args) == 6: - # Backwards compat for cloudpickle v0.4.1, after which the function - # state was passed as a dict to the _fill_function it-self. - func = args[0] - keys = ['globals', 'defaults', 'dict', 'module', 'closure_values'] - state = dict(zip(keys, args[1:])) - else: - raise ValueError('Unexpected _fill_value arguments: %r' % (args,)) - - # - At pickling time, any dynamic global variable used by func is - # serialized by value (in state['globals']). - # - At unpickling time, func's __globals__ attribute is initialized by - # first retrieving an empty isolated namespace that will be shared - # with other functions pickled from the same original module - # by the same CloudPickler instance and then updated with the - # content of state['globals'] to populate the shared isolated - # namespace with all the global variables that are specifically - # referenced for this function. - func.__globals__.update(state['globals']) - - func.__defaults__ = state['defaults'] - func.__dict__ = state['dict'] - if 'annotations' in state: - func.__annotations__ = state['annotations'] - if 'doc' in state: - func.__doc__ = state['doc'] - if 'name' in state: - func.__name__ = state['name'] - if 'module' in state: - func.__module__ = state['module'] - if 'qualname' in state: - func.__qualname__ = state['qualname'] - if 'kwdefaults' in state: - func.__kwdefaults__ = state['kwdefaults'] - - cells = func.__closure__ - if cells is not None: - for cell, value in zip(cells, state['closure_values']): - if value is not _empty_cell_value: - cell_set(cell, value) - - return func - - -def _make_empty_cell(): - if False: - # trick the compiler into creating an empty cell in our lambda - cell = None - raise AssertionError('this route should not be executed') - - return (lambda: cell).__closure__[0] - - -def _make_skel_func(code, cell_count, base_globals=None): - """ Creates a skeleton function object that contains just the provided - code and the correct number of cells in func_closure. All other - func attributes (e.g. func_globals) are empty. - """ - # This is backward-compatibility code: for cloudpickle versions between - # 0.5.4 and 0.7, base_globals could be a string or None. base_globals - # should now always be a dictionary. - if base_globals is None or isinstance(base_globals, str): - base_globals = {} - - base_globals['__builtins__'] = __builtins__ - - closure = ( - tuple(_make_empty_cell() for _ in range(cell_count)) - if cell_count >= 0 else - None - ) - return types.FunctionType(code, base_globals, None, None, closure) - - -def _make_skeleton_class(type_constructor, name, bases, type_kwargs, - class_tracker_id, extra): - """Build dynamic class with an empty __dict__ to be filled once memoized - - If class_tracker_id is not None, try to lookup an existing class definition - matching that id. If none is found, track a newly reconstructed class - definition under that id so that other instances stemming from the same - class id will also reuse this class definition. - - The "extra" variable is meant to be a dict (or None) that can be used for - forward compatibility shall the need arise. - """ - skeleton_class = type_constructor(name, bases, type_kwargs) - return _lookup_class_or_track(class_tracker_id, skeleton_class) - - -def _rehydrate_skeleton_class(skeleton_class, class_dict): - """Put attributes from `class_dict` back on `skeleton_class`. - - See CloudPickler.save_dynamic_class for more info. - """ - registry = None - for attrname, attr in class_dict.items(): - if attrname == "_abc_impl": - registry = attr - else: - setattr(skeleton_class, attrname, attr) - if registry is not None: - for subclass in registry: - skeleton_class.register(subclass) - - return skeleton_class - - -def _make_skeleton_enum(bases, name, qualname, members, module, - class_tracker_id, extra): - """Build dynamic enum with an empty __dict__ to be filled once memoized - - The creation of the enum class is inspired by the code of - EnumMeta._create_. - - If class_tracker_id is not None, try to lookup an existing enum definition - matching that id. If none is found, track a newly reconstructed enum - definition under that id so that other instances stemming from the same - class id will also reuse this enum definition. - - The "extra" variable is meant to be a dict (or None) that can be used for - forward compatibility shall the need arise. - """ - # enums always inherit from their base Enum class at the last position in - # the list of base classes: - enum_base = bases[-1] - metacls = enum_base.__class__ - classdict = metacls.__prepare__(name, bases) - - for member_name, member_value in members.items(): - classdict[member_name] = member_value - enum_class = metacls.__new__(metacls, name, bases, classdict) - enum_class.__module__ = module - - # Python 2.7 compat - if qualname is not None: - enum_class.__qualname__ = qualname - - return _lookup_class_or_track(class_tracker_id, enum_class) - - -def _is_dynamic(module): - """ - Return True if the module is special module that cannot be imported by its - name. - """ - # Quick check: module that have __file__ attribute are not dynamic modules. - if hasattr(module, '__file__'): - return False - - if hasattr(module, '__spec__'): - return module.__spec__ is None - else: - # Backward compat for Python 2 - import imp - try: - path = None - for part in module.__name__.split('.'): - if path is not None: - path = [path] - f, path, description = imp.find_module(part, path) - if f is not None: - f.close() - except ImportError: - return True - return False - - -""" Use copy_reg to extend global pickle definitions """ - -if sys.version_info < (3, 4): # pragma: no branch - method_descriptor = type(str.upper) - - def _reduce_method_descriptor(obj): - return (getattr, (obj.__objclass__, obj.__name__)) - - try: - import copy_reg as copyreg - except ImportError: - import copyreg - copyreg.pickle(method_descriptor, _reduce_method_descriptor) \ No newline at end of file diff --git a/python/pyspark/cloudpickle/__init__.py b/python/pyspark/cloudpickle/__init__.py new file mode 100644 index 0000000000000..4e85b637800dc --- /dev/null +++ b/python/pyspark/cloudpickle/__init__.py @@ -0,0 +1,7 @@ +from __future__ import absolute_import + + +from pyspark.cloudpickle.cloudpickle import * # noqa +from pyspark.cloudpickle.cloudpickle_fast import CloudPickler, dumps, dump # noqa + +__version__ = '1.5.0' diff --git a/python/pyspark/cloudpickle/cloudpickle.py b/python/pyspark/cloudpickle/cloudpickle.py new file mode 100644 index 0000000000000..8e683e7a6988b --- /dev/null +++ b/python/pyspark/cloudpickle/cloudpickle.py @@ -0,0 +1,830 @@ +""" +This class is defined to override standard pickle functionality + +The goals of it follow: +-Serialize lambdas and nested functions to compiled byte code +-Deal with main module correctly +-Deal with other non-serializable objects + +It does not include an unpickler, as standard python unpickling suffices. + +This module was extracted from the `cloud` package, developed by `PiCloud, Inc. +`_. + +Copyright (c) 2012, Regents of the University of California. +Copyright (c) 2009 `PiCloud, Inc. `_. +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + * Neither the name of the University of California, Berkeley nor the + names of its contributors may be used to endorse or promote + products derived from this software without specific prior written + permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED +TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +""" +from __future__ import print_function + +import builtins +import dis +import opcode +import platform +import sys +import types +import weakref +import uuid +import threading +import typing +import warnings + +from .compat import pickle +from typing import Generic, Union, Tuple, Callable +from pickle import _getattribute +from importlib._bootstrap import _find_spec + +try: # pragma: no branch + import typing_extensions as _typing_extensions + from typing_extensions import Literal, Final +except ImportError: + _typing_extensions = Literal = Final = None + +if sys.version_info >= (3, 5, 3): + from typing import ClassVar +else: # pragma: no cover + ClassVar = None + +if sys.version_info >= (3, 8): + from types import CellType +else: + def f(): + a = 1 + + def g(): + return a + return g + CellType = type(f().__closure__[0]) + + +# cloudpickle is meant for inter process communication: we expect all +# communicating processes to run the same Python version hence we favor +# communication speed over compatibility: +DEFAULT_PROTOCOL = pickle.HIGHEST_PROTOCOL + +# Track the provenance of reconstructed dynamic classes to make it possible to +# recontruct instances from the matching singleton class definition when +# appropriate and preserve the usual "isinstance" semantics of Python objects. +_DYNAMIC_CLASS_TRACKER_BY_CLASS = weakref.WeakKeyDictionary() +_DYNAMIC_CLASS_TRACKER_BY_ID = weakref.WeakValueDictionary() +_DYNAMIC_CLASS_TRACKER_LOCK = threading.Lock() + +PYPY = platform.python_implementation() == "PyPy" + +builtin_code_type = None +if PYPY: + # builtin-code objects only exist in pypy + builtin_code_type = type(float.__new__.__code__) + +_extract_code_globals_cache = weakref.WeakKeyDictionary() + + +def _get_or_create_tracker_id(class_def): + with _DYNAMIC_CLASS_TRACKER_LOCK: + class_tracker_id = _DYNAMIC_CLASS_TRACKER_BY_CLASS.get(class_def) + if class_tracker_id is None: + class_tracker_id = uuid.uuid4().hex + _DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id + _DYNAMIC_CLASS_TRACKER_BY_ID[class_tracker_id] = class_def + return class_tracker_id + + +def _lookup_class_or_track(class_tracker_id, class_def): + if class_tracker_id is not None: + with _DYNAMIC_CLASS_TRACKER_LOCK: + class_def = _DYNAMIC_CLASS_TRACKER_BY_ID.setdefault( + class_tracker_id, class_def) + _DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id + return class_def + + +def _whichmodule(obj, name): + """Find the module an object belongs to. + + This function differs from ``pickle.whichmodule`` in two ways: + - it does not mangle the cases where obj's module is __main__ and obj was + not found in any module. + - Errors arising during module introspection are ignored, as those errors + are considered unwanted side effects. + """ + if sys.version_info[:2] < (3, 7) and isinstance(obj, typing.TypeVar): # pragma: no branch # noqa + # Workaround bug in old Python versions: prior to Python 3.7, + # T.__module__ would always be set to "typing" even when the TypeVar T + # would be defined in a different module. + # + # For such older Python versions, we ignore the __module__ attribute of + # TypeVar instances and instead exhaustively lookup those instances in + # all currently imported modules. + module_name = None + else: + module_name = getattr(obj, '__module__', None) + + if module_name is not None: + return module_name + # Protect the iteration by using a copy of sys.modules against dynamic + # modules that trigger imports of other modules upon calls to getattr or + # other threads importing at the same time. + for module_name, module in sys.modules.copy().items(): + # Some modules such as coverage can inject non-module objects inside + # sys.modules + if ( + module_name == '__main__' or + module is None or + not isinstance(module, types.ModuleType) + ): + continue + try: + if _getattribute(module, name)[0] is obj: + return module_name + except Exception: + pass + return None + + +def _is_importable(obj, name=None): + """Dispatcher utility to test the importability of various constructs.""" + if isinstance(obj, types.FunctionType): + return _lookup_module_and_qualname(obj, name=name) is not None + elif issubclass(type(obj), type): + return _lookup_module_and_qualname(obj, name=name) is not None + elif isinstance(obj, types.ModuleType): + # We assume that sys.modules is primarily used as a cache mechanism for + # the Python import machinery. Checking if a module has been added in + # is sys.modules therefore a cheap and simple heuristic to tell us whether + # we can assume that a given module could be imported by name in + # another Python process. + return obj.__name__ in sys.modules + else: + raise TypeError( + "cannot check importability of {} instances".format( + type(obj).__name__) + ) + + +def _lookup_module_and_qualname(obj, name=None): + if name is None: + name = getattr(obj, '__qualname__', None) + if name is None: # pragma: no cover + # This used to be needed for Python 2.7 support but is probably not + # needed anymore. However we keep the __name__ introspection in case + # users of cloudpickle rely on this old behavior for unknown reasons. + name = getattr(obj, '__name__', None) + + module_name = _whichmodule(obj, name) + + if module_name is None: + # In this case, obj.__module__ is None AND obj was not found in any + # imported module. obj is thus treated as dynamic. + return None + + if module_name == "__main__": + return None + + # Note: if module_name is in sys.modules, the corresponding module is + # assumed importable at unpickling time. See #357 + module = sys.modules.get(module_name, None) + if module is None: + # The main reason why obj's module would not be imported is that this + # module has been dynamically created, using for example + # types.ModuleType. The other possibility is that module was removed + # from sys.modules after obj was created/imported. But this case is not + # supported, as the standard pickle does not support it either. + return None + + try: + obj2, parent = _getattribute(module, name) + except AttributeError: + # obj was not found inside the module it points to + return None + if obj2 is not obj: + return None + return module, name + + +def _extract_code_globals(co): + """ + Find all globals names read or written to by codeblock co + """ + out_names = _extract_code_globals_cache.get(co) + if out_names is None: + names = co.co_names + out_names = {names[oparg] for _, oparg in _walk_global_ops(co)} + + # Declaring a function inside another one using the "def ..." + # syntax generates a constant code object corresonding to the one + # of the nested function's As the nested function may itself need + # global variables, we need to introspect its code, extract its + # globals, (look for code object in it's co_consts attribute..) and + # add the result to code_globals + if co.co_consts: + for const in co.co_consts: + if isinstance(const, types.CodeType): + out_names |= _extract_code_globals(const) + + _extract_code_globals_cache[co] = out_names + + return out_names + + +def _find_imported_submodules(code, top_level_dependencies): + """ + Find currently imported submodules used by a function. + + Submodules used by a function need to be detected and referenced for the + function to work correctly at depickling time. Because submodules can be + referenced as attribute of their parent package (``package.submodule``), we + need a special introspection technique that does not rely on GLOBAL-related + opcodes to find references of them in a code object. + + Example: + ``` + import concurrent.futures + import cloudpickle + def func(): + x = concurrent.futures.ThreadPoolExecutor + if __name__ == '__main__': + cloudpickle.dumps(func) + ``` + The globals extracted by cloudpickle in the function's state include the + concurrent package, but not its submodule (here, concurrent.futures), which + is the module used by func. Find_imported_submodules will detect the usage + of concurrent.futures. Saving this module alongside with func will ensure + that calling func once depickled does not fail due to concurrent.futures + not being imported + """ + + subimports = [] + # check if any known dependency is an imported package + for x in top_level_dependencies: + if (isinstance(x, types.ModuleType) and + hasattr(x, '__package__') and x.__package__): + # check if the package has any currently loaded sub-imports + prefix = x.__name__ + '.' + # A concurrent thread could mutate sys.modules, + # make sure we iterate over a copy to avoid exceptions + for name in list(sys.modules): + # Older versions of pytest will add a "None" module to + # sys.modules. + if name is not None and name.startswith(prefix): + # check whether the function can address the sub-module + tokens = set(name[len(prefix):].split('.')) + if not tokens - set(code.co_names): + subimports.append(sys.modules[name]) + return subimports + + +def cell_set(cell, value): + """Set the value of a closure cell. + + The point of this function is to set the cell_contents attribute of a cell + after its creation. This operation is necessary in case the cell contains a + reference to the function the cell belongs to, as when calling the + function's constructor + ``f = types.FunctionType(code, globals, name, argdefs, closure)``, + closure will not be able to contain the yet-to-be-created f. + + In Python3.7, cell_contents is writeable, so setting the contents of a cell + can be done simply using + >>> cell.cell_contents = value + + In earlier Python3 versions, the cell_contents attribute of a cell is read + only, but this limitation can be worked around by leveraging the Python 3 + ``nonlocal`` keyword. + + In Python2 however, this attribute is read only, and there is no + ``nonlocal`` keyword. For this reason, we need to come up with more + complicated hacks to set this attribute. + + The chosen approach is to create a function with a STORE_DEREF opcode, + which sets the content of a closure variable. Typically: + + >>> def inner(value): + ... lambda: cell # the lambda makes cell a closure + ... cell = value # cell is a closure, so this triggers a STORE_DEREF + + (Note that in Python2, A STORE_DEREF can never be triggered from an inner + function. The function g for example here + >>> def f(var): + ... def g(): + ... var += 1 + ... return g + + will not modify the closure variable ``var```inplace, but instead try to + load a local variable var and increment it. As g does not assign the local + variable ``var`` any initial value, calling f(1)() will fail at runtime.) + + Our objective is to set the value of a given cell ``cell``. So we need to + somewhat reference our ``cell`` object into the ``inner`` function so that + this object (and not the smoke cell of the lambda function) gets affected + by the STORE_DEREF operation. + + In inner, ``cell`` is referenced as a cell variable (an enclosing variable + that is referenced by the inner function). If we create a new function + cell_set with the exact same code as ``inner``, but with ``cell`` marked as + a free variable instead, the STORE_DEREF will be applied on its closure - + ``cell``, which we can specify explicitly during construction! The new + cell_set variable thus actually sets the contents of a specified cell! + + Note: we do not make use of the ``nonlocal`` keyword to set the contents of + a cell in early python3 versions to limit possible syntax errors in case + test and checker libraries decide to parse the whole file. + """ + + if sys.version_info[:2] >= (3, 7): # pragma: no branch + cell.cell_contents = value + else: + _cell_set = types.FunctionType( + _cell_set_template_code, {}, '_cell_set', (), (cell,),) + _cell_set(value) + + +def _make_cell_set_template_code(): + def _cell_set_factory(value): + lambda: cell + cell = value + + co = _cell_set_factory.__code__ + + _cell_set_template_code = types.CodeType( + co.co_argcount, + co.co_kwonlyargcount, # Python 3 only argument + co.co_nlocals, + co.co_stacksize, + co.co_flags, + co.co_code, + co.co_consts, + co.co_names, + co.co_varnames, + co.co_filename, + co.co_name, + co.co_firstlineno, + co.co_lnotab, + co.co_cellvars, # co_freevars is initialized with co_cellvars + (), # co_cellvars is made empty + ) + return _cell_set_template_code + + +if sys.version_info[:2] < (3, 7): + _cell_set_template_code = _make_cell_set_template_code() + +# relevant opcodes +STORE_GLOBAL = opcode.opmap['STORE_GLOBAL'] +DELETE_GLOBAL = opcode.opmap['DELETE_GLOBAL'] +LOAD_GLOBAL = opcode.opmap['LOAD_GLOBAL'] +GLOBAL_OPS = (STORE_GLOBAL, DELETE_GLOBAL, LOAD_GLOBAL) +HAVE_ARGUMENT = dis.HAVE_ARGUMENT +EXTENDED_ARG = dis.EXTENDED_ARG + + +_BUILTIN_TYPE_NAMES = {} +for k, v in types.__dict__.items(): + if type(v) is type: + _BUILTIN_TYPE_NAMES[v] = k + + +def _builtin_type(name): + if name == "ClassType": # pragma: no cover + # Backward compat to load pickle files generated with cloudpickle + # < 1.3 even if loading pickle files from older versions is not + # officially supported. + return type + return getattr(types, name) + + +def _walk_global_ops(code): + """ + Yield (opcode, argument number) tuples for all + global-referencing instructions in *code*. + """ + for instr in dis.get_instructions(code): + op = instr.opcode + if op in GLOBAL_OPS: + yield op, instr.arg + + +def _extract_class_dict(cls): + """Retrieve a copy of the dict of a class without the inherited methods""" + clsdict = dict(cls.__dict__) # copy dict proxy to a dict + if len(cls.__bases__) == 1: + inherited_dict = cls.__bases__[0].__dict__ + else: + inherited_dict = {} + for base in reversed(cls.__bases__): + inherited_dict.update(base.__dict__) + to_remove = [] + for name, value in clsdict.items(): + try: + base_value = inherited_dict[name] + if value is base_value: + to_remove.append(name) + except KeyError: + pass + for name in to_remove: + clsdict.pop(name) + return clsdict + + +if sys.version_info[:2] < (3, 7): # pragma: no branch + def _is_parametrized_type_hint(obj): + # This is very cheap but might generate false positives. + # general typing Constructs + is_typing = getattr(obj, '__origin__', None) is not None + + # typing_extensions.Literal + is_litteral = getattr(obj, '__values__', None) is not None + + # typing_extensions.Final + is_final = getattr(obj, '__type__', None) is not None + + # typing.Union/Tuple for old Python 3.5 + is_union = getattr(obj, '__union_params__', None) is not None + is_tuple = getattr(obj, '__tuple_params__', None) is not None + is_callable = ( + getattr(obj, '__result__', None) is not None and + getattr(obj, '__args__', None) is not None + ) + return any((is_typing, is_litteral, is_final, is_union, is_tuple, + is_callable)) + + def _create_parametrized_type_hint(origin, args): + return origin[args] +else: + _is_parametrized_type_hint = None + _create_parametrized_type_hint = None + + +def parametrized_type_hint_getinitargs(obj): + # The distorted type check sematic for typing construct becomes: + # ``type(obj) is type(TypeHint)``, which means "obj is a + # parametrized TypeHint" + if type(obj) is type(Literal): # pragma: no branch + initargs = (Literal, obj.__values__) + elif type(obj) is type(Final): # pragma: no branch + initargs = (Final, obj.__type__) + elif type(obj) is type(ClassVar): + initargs = (ClassVar, obj.__type__) + elif type(obj) is type(Generic): + parameters = obj.__parameters__ + if len(obj.__parameters__) > 0: + # in early Python 3.5, __parameters__ was sometimes + # preferred to __args__ + initargs = (obj.__origin__, parameters) + + else: + initargs = (obj.__origin__, obj.__args__) + elif type(obj) is type(Union): + if sys.version_info < (3, 5, 3): # pragma: no cover + initargs = (Union, obj.__union_params__) + else: + initargs = (Union, obj.__args__) + elif type(obj) is type(Tuple): + if sys.version_info < (3, 5, 3): # pragma: no cover + initargs = (Tuple, obj.__tuple_params__) + else: + initargs = (Tuple, obj.__args__) + elif type(obj) is type(Callable): + if sys.version_info < (3, 5, 3): # pragma: no cover + args = obj.__args__ + result = obj.__result__ + if args != Ellipsis: + if isinstance(args, tuple): + args = list(args) + else: + args = [args] + else: + (*args, result) = obj.__args__ + if len(args) == 1 and args[0] is Ellipsis: + args = Ellipsis + else: + args = list(args) + initargs = (Callable, (args, result)) + else: # pragma: no cover + raise pickle.PicklingError( + "Cloudpickle Error: Unknown type {}".format(type(obj)) + ) + return initargs + + +# Tornado support + +def is_tornado_coroutine(func): + """ + Return whether *func* is a Tornado coroutine function. + Running coroutines are not supported. + """ + if 'tornado.gen' not in sys.modules: + return False + gen = sys.modules['tornado.gen'] + if not hasattr(gen, "is_coroutine_function"): + # Tornado version is too old + return False + return gen.is_coroutine_function(func) + + +def _rebuild_tornado_coroutine(func): + from tornado import gen + return gen.coroutine(func) + + +# including pickles unloading functions in this namespace +load = pickle.load +loads = pickle.loads + + +# hack for __import__ not working as desired +def subimport(name): + __import__(name) + return sys.modules[name] + + +def dynamic_subimport(name, vars): + mod = types.ModuleType(name) + mod.__dict__.update(vars) + mod.__dict__['__builtins__'] = builtins.__dict__ + return mod + + +def _gen_ellipsis(): + return Ellipsis + + +def _gen_not_implemented(): + return NotImplemented + + +def _get_cell_contents(cell): + try: + return cell.cell_contents + except ValueError: + # sentinel used by ``_fill_function`` which will leave the cell empty + return _empty_cell_value + + +def instance(cls): + """Create a new instance of a class. + + Parameters + ---------- + cls : type + The class to create an instance of. + + Returns + ------- + instance : cls + A new instance of ``cls``. + """ + return cls() + + +@instance +class _empty_cell_value(object): + """sentinel for empty closures + """ + @classmethod + def __reduce__(cls): + return cls.__name__ + + +def _fill_function(*args): + """Fills in the rest of function data into the skeleton function object + + The skeleton itself is create by _make_skel_func(). + """ + if len(args) == 2: + func = args[0] + state = args[1] + elif len(args) == 5: + # Backwards compat for cloudpickle v0.4.0, after which the `module` + # argument was introduced + func = args[0] + keys = ['globals', 'defaults', 'dict', 'closure_values'] + state = dict(zip(keys, args[1:])) + elif len(args) == 6: + # Backwards compat for cloudpickle v0.4.1, after which the function + # state was passed as a dict to the _fill_function it-self. + func = args[0] + keys = ['globals', 'defaults', 'dict', 'module', 'closure_values'] + state = dict(zip(keys, args[1:])) + else: + raise ValueError('Unexpected _fill_value arguments: %r' % (args,)) + + # - At pickling time, any dynamic global variable used by func is + # serialized by value (in state['globals']). + # - At unpickling time, func's __globals__ attribute is initialized by + # first retrieving an empty isolated namespace that will be shared + # with other functions pickled from the same original module + # by the same CloudPickler instance and then updated with the + # content of state['globals'] to populate the shared isolated + # namespace with all the global variables that are specifically + # referenced for this function. + func.__globals__.update(state['globals']) + + func.__defaults__ = state['defaults'] + func.__dict__ = state['dict'] + if 'annotations' in state: + func.__annotations__ = state['annotations'] + if 'doc' in state: + func.__doc__ = state['doc'] + if 'name' in state: + func.__name__ = state['name'] + if 'module' in state: + func.__module__ = state['module'] + if 'qualname' in state: + func.__qualname__ = state['qualname'] + if 'kwdefaults' in state: + func.__kwdefaults__ = state['kwdefaults'] + # _cloudpickle_subimports is a set of submodules that must be loaded for + # the pickled function to work correctly at unpickling time. Now that these + # submodules are depickled (hence imported), they can be removed from the + # object's state (the object state only served as a reference holder to + # these submodules) + if '_cloudpickle_submodules' in state: + state.pop('_cloudpickle_submodules') + + cells = func.__closure__ + if cells is not None: + for cell, value in zip(cells, state['closure_values']): + if value is not _empty_cell_value: + cell_set(cell, value) + + return func + + +def _make_empty_cell(): + if False: + # trick the compiler into creating an empty cell in our lambda + cell = None + raise AssertionError('this route should not be executed') + + return (lambda: cell).__closure__[0] + + +def _make_cell(value=_empty_cell_value): + cell = _make_empty_cell() + if value is not _empty_cell_value: + cell_set(cell, value) + return cell + + +def _make_skel_func(code, cell_count, base_globals=None): + """ Creates a skeleton function object that contains just the provided + code and the correct number of cells in func_closure. All other + func attributes (e.g. func_globals) are empty. + """ + # This function is deprecated and should be removed in cloudpickle 1.7 + warnings.warn( + "A pickle file created using an old (<=1.4.1) version of cloudpicke " + "is currently being loaded. This is not supported by cloudpickle and " + "will break in cloudpickle 1.7", category=UserWarning + ) + # This is backward-compatibility code: for cloudpickle versions between + # 0.5.4 and 0.7, base_globals could be a string or None. base_globals + # should now always be a dictionary. + if base_globals is None or isinstance(base_globals, str): + base_globals = {} + + base_globals['__builtins__'] = __builtins__ + + closure = ( + tuple(_make_empty_cell() for _ in range(cell_count)) + if cell_count >= 0 else + None + ) + return types.FunctionType(code, base_globals, None, None, closure) + + +def _make_skeleton_class(type_constructor, name, bases, type_kwargs, + class_tracker_id, extra): + """Build dynamic class with an empty __dict__ to be filled once memoized + + If class_tracker_id is not None, try to lookup an existing class definition + matching that id. If none is found, track a newly reconstructed class + definition under that id so that other instances stemming from the same + class id will also reuse this class definition. + + The "extra" variable is meant to be a dict (or None) that can be used for + forward compatibility shall the need arise. + """ + skeleton_class = types.new_class( + name, bases, {'metaclass': type_constructor}, + lambda ns: ns.update(type_kwargs) + ) + return _lookup_class_or_track(class_tracker_id, skeleton_class) + + +def _rehydrate_skeleton_class(skeleton_class, class_dict): + """Put attributes from `class_dict` back on `skeleton_class`. + + See CloudPickler.save_dynamic_class for more info. + """ + registry = None + for attrname, attr in class_dict.items(): + if attrname == "_abc_impl": + registry = attr + else: + setattr(skeleton_class, attrname, attr) + if registry is not None: + for subclass in registry: + skeleton_class.register(subclass) + + return skeleton_class + + +def _make_skeleton_enum(bases, name, qualname, members, module, + class_tracker_id, extra): + """Build dynamic enum with an empty __dict__ to be filled once memoized + + The creation of the enum class is inspired by the code of + EnumMeta._create_. + + If class_tracker_id is not None, try to lookup an existing enum definition + matching that id. If none is found, track a newly reconstructed enum + definition under that id so that other instances stemming from the same + class id will also reuse this enum definition. + + The "extra" variable is meant to be a dict (or None) that can be used for + forward compatibility shall the need arise. + """ + # enums always inherit from their base Enum class at the last position in + # the list of base classes: + enum_base = bases[-1] + metacls = enum_base.__class__ + classdict = metacls.__prepare__(name, bases) + + for member_name, member_value in members.items(): + classdict[member_name] = member_value + enum_class = metacls.__new__(metacls, name, bases, classdict) + enum_class.__module__ = module + enum_class.__qualname__ = qualname + + return _lookup_class_or_track(class_tracker_id, enum_class) + + +def _make_typevar(name, bound, constraints, covariant, contravariant, + class_tracker_id): + tv = typing.TypeVar( + name, *constraints, bound=bound, + covariant=covariant, contravariant=contravariant + ) + if class_tracker_id is not None: + return _lookup_class_or_track(class_tracker_id, tv) + else: # pragma: nocover + # Only for Python 3.5.3 compat. + return tv + + +def _decompose_typevar(obj): + try: + class_tracker_id = _get_or_create_tracker_id(obj) + except TypeError: # pragma: nocover + # TypeVar instances are not weakref-able in Python 3.5.3 + class_tracker_id = None + return ( + obj.__name__, obj.__bound__, obj.__constraints__, + obj.__covariant__, obj.__contravariant__, + class_tracker_id, + ) + + +def _typevar_reduce(obj): + # TypeVar instances have no __qualname__ hence we pass the name explicitly. + module_and_name = _lookup_module_and_qualname(obj, name=obj.__name__) + if module_and_name is None: + return (_make_typevar, _decompose_typevar(obj)) + return (getattr, module_and_name) + + +def _get_bases(typ): + if hasattr(typ, '__orig_bases__'): + # For generic types (see PEP 560) + bases_attr = '__orig_bases__' + else: + # For regular class objects + bases_attr = '__bases__' + return getattr(typ, bases_attr) diff --git a/python/pyspark/cloudpickle/cloudpickle_fast.py b/python/pyspark/cloudpickle/cloudpickle_fast.py new file mode 100644 index 0000000000000..e8e46b88fdc91 --- /dev/null +++ b/python/pyspark/cloudpickle/cloudpickle_fast.py @@ -0,0 +1,747 @@ +""" +New, fast version of the CloudPickler. + +This new CloudPickler class can now extend the fast C Pickler instead of the +previous Python implementation of the Pickler class. Because this functionality +is only available for Python versions 3.8+, a lot of backward-compatibility +code is also removed. + +Note that the C Pickler sublassing API is CPython-specific. Therefore, some +guards present in cloudpickle.py that were written to handle PyPy specificities +are not present in cloudpickle_fast.py +""" +import abc +import copyreg +import io +import itertools +import logging +import sys +import struct +import types +import weakref +import typing + +from enum import Enum +from collections import ChainMap + +from .compat import pickle, Pickler +from .cloudpickle import ( + _extract_code_globals, _BUILTIN_TYPE_NAMES, DEFAULT_PROTOCOL, + _find_imported_submodules, _get_cell_contents, _is_importable, + _builtin_type, _get_or_create_tracker_id, _make_skeleton_class, + _make_skeleton_enum, _extract_class_dict, dynamic_subimport, subimport, + _typevar_reduce, _get_bases, _make_cell, _make_empty_cell, CellType, + _is_parametrized_type_hint, PYPY, cell_set, + parametrized_type_hint_getinitargs, _create_parametrized_type_hint, + builtin_code_type + +) + + +if pickle.HIGHEST_PROTOCOL >= 5 and not PYPY: + # Shorthands similar to pickle.dump/pickle.dumps + + def dump(obj, file, protocol=None, buffer_callback=None): + """Serialize obj as bytes streamed into file + + protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to + pickle.HIGHEST_PROTOCOL. This setting favors maximum communication + speed between processes running the same Python version. + + Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure + compatibility with older versions of Python. + """ + CloudPickler( + file, protocol=protocol, buffer_callback=buffer_callback + ).dump(obj) + + def dumps(obj, protocol=None, buffer_callback=None): + """Serialize obj as a string of bytes allocated in memory + + protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to + pickle.HIGHEST_PROTOCOL. This setting favors maximum communication + speed between processes running the same Python version. + + Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure + compatibility with older versions of Python. + """ + with io.BytesIO() as file: + cp = CloudPickler( + file, protocol=protocol, buffer_callback=buffer_callback + ) + cp.dump(obj) + return file.getvalue() + +else: + # Shorthands similar to pickle.dump/pickle.dumps + def dump(obj, file, protocol=None): + """Serialize obj as bytes streamed into file + + protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to + pickle.HIGHEST_PROTOCOL. This setting favors maximum communication + speed between processes running the same Python version. + + Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure + compatibility with older versions of Python. + """ + CloudPickler(file, protocol=protocol).dump(obj) + + def dumps(obj, protocol=None): + """Serialize obj as a string of bytes allocated in memory + + protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to + pickle.HIGHEST_PROTOCOL. This setting favors maximum communication + speed between processes running the same Python version. + + Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure + compatibility with older versions of Python. + """ + with io.BytesIO() as file: + cp = CloudPickler(file, protocol=protocol) + cp.dump(obj) + return file.getvalue() + + +load, loads = pickle.load, pickle.loads + + +# COLLECTION OF OBJECTS __getnewargs__-LIKE METHODS +# ------------------------------------------------- + +def _class_getnewargs(obj): + type_kwargs = {} + if "__slots__" in obj.__dict__: + type_kwargs["__slots__"] = obj.__slots__ + + __dict__ = obj.__dict__.get('__dict__', None) + if isinstance(__dict__, property): + type_kwargs['__dict__'] = __dict__ + + return (type(obj), obj.__name__, _get_bases(obj), type_kwargs, + _get_or_create_tracker_id(obj), None) + + +def _enum_getnewargs(obj): + members = dict((e.name, e.value) for e in obj) + return (obj.__bases__, obj.__name__, obj.__qualname__, members, + obj.__module__, _get_or_create_tracker_id(obj), None) + + +# COLLECTION OF OBJECTS RECONSTRUCTORS +# ------------------------------------ +def _file_reconstructor(retval): + return retval + + +# COLLECTION OF OBJECTS STATE GETTERS +# ----------------------------------- +def _function_getstate(func): + # - Put func's dynamic attributes (stored in func.__dict__) in state. These + # attributes will be restored at unpickling time using + # f.__dict__.update(state) + # - Put func's members into slotstate. Such attributes will be restored at + # unpickling time by iterating over slotstate and calling setattr(func, + # slotname, slotvalue) + slotstate = { + "__name__": func.__name__, + "__qualname__": func.__qualname__, + "__annotations__": func.__annotations__, + "__kwdefaults__": func.__kwdefaults__, + "__defaults__": func.__defaults__, + "__module__": func.__module__, + "__doc__": func.__doc__, + "__closure__": func.__closure__, + } + + f_globals_ref = _extract_code_globals(func.__code__) + f_globals = {k: func.__globals__[k] for k in f_globals_ref if k in + func.__globals__} + + closure_values = ( + list(map(_get_cell_contents, func.__closure__)) + if func.__closure__ is not None else () + ) + + # Extract currently-imported submodules used by func. Storing these modules + # in a smoke _cloudpickle_subimports attribute of the object's state will + # trigger the side effect of importing these modules at unpickling time + # (which is necessary for func to work correctly once depickled) + slotstate["_cloudpickle_submodules"] = _find_imported_submodules( + func.__code__, itertools.chain(f_globals.values(), closure_values)) + slotstate["__globals__"] = f_globals + + state = func.__dict__ + return state, slotstate + + +def _class_getstate(obj): + clsdict = _extract_class_dict(obj) + clsdict.pop('__weakref__', None) + + if issubclass(type(obj), abc.ABCMeta): + # If obj is an instance of an ABCMeta subclass, dont pickle the + # cache/negative caches populated during isinstance/issubclass + # checks, but pickle the list of registered subclasses of obj. + clsdict.pop('_abc_cache', None) + clsdict.pop('_abc_negative_cache', None) + clsdict.pop('_abc_negative_cache_version', None) + registry = clsdict.pop('_abc_registry', None) + if registry is None: + # in Python3.7+, the abc caches and registered subclasses of a + # class are bundled into the single _abc_impl attribute + clsdict.pop('_abc_impl', None) + (registry, _, _, _) = abc._get_dump(obj) + + clsdict["_abc_impl"] = [subclass_weakref() + for subclass_weakref in registry] + else: + # In the above if clause, registry is a set of weakrefs -- in + # this case, registry is a WeakSet + clsdict["_abc_impl"] = [type_ for type_ in registry] + + if "__slots__" in clsdict: + # pickle string length optimization: member descriptors of obj are + # created automatically from obj's __slots__ attribute, no need to + # save them in obj's state + if isinstance(obj.__slots__, str): + clsdict.pop(obj.__slots__) + else: + for k in obj.__slots__: + clsdict.pop(k, None) + + clsdict.pop('__dict__', None) # unpicklable property object + + return (clsdict, {}) + + +def _enum_getstate(obj): + clsdict, slotstate = _class_getstate(obj) + + members = dict((e.name, e.value) for e in obj) + # Cleanup the clsdict that will be passed to _rehydrate_skeleton_class: + # Those attributes are already handled by the metaclass. + for attrname in ["_generate_next_value_", "_member_names_", + "_member_map_", "_member_type_", + "_value2member_map_"]: + clsdict.pop(attrname, None) + for member in members: + clsdict.pop(member) + # Special handling of Enum subclasses + return clsdict, slotstate + + +# COLLECTIONS OF OBJECTS REDUCERS +# ------------------------------- +# A reducer is a function taking a single argument (obj), and that returns a +# tuple with all the necessary data to re-construct obj. Apart from a few +# exceptions (list, dict, bytes, int, etc.), a reducer is necessary to +# correctly pickle an object. +# While many built-in objects (Exceptions objects, instances of the "object" +# class, etc), are shipped with their own built-in reducer (invoked using +# obj.__reduce__), some do not. The following methods were created to "fill +# these holes". + +def _code_reduce(obj): + """codeobject reducer""" + if hasattr(obj, "co_posonlyargcount"): # pragma: no branch + args = ( + obj.co_argcount, obj.co_posonlyargcount, + obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, + obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, + obj.co_varnames, obj.co_filename, obj.co_name, + obj.co_firstlineno, obj.co_lnotab, obj.co_freevars, + obj.co_cellvars + ) + else: + args = ( + obj.co_argcount, obj.co_kwonlyargcount, obj.co_nlocals, + obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, + obj.co_names, obj.co_varnames, obj.co_filename, + obj.co_name, obj.co_firstlineno, obj.co_lnotab, + obj.co_freevars, obj.co_cellvars + ) + return types.CodeType, args + + +def _cell_reduce(obj): + """Cell (containing values of a function's free variables) reducer""" + try: + obj.cell_contents + except ValueError: # cell is empty + return _make_empty_cell, () + else: + return _make_cell, (obj.cell_contents, ) + + +def _classmethod_reduce(obj): + orig_func = obj.__func__ + return type(obj), (orig_func,) + + +def _file_reduce(obj): + """Save a file""" + import io + + if not hasattr(obj, "name") or not hasattr(obj, "mode"): + raise pickle.PicklingError( + "Cannot pickle files that do not map to an actual file" + ) + if obj is sys.stdout: + return getattr, (sys, "stdout") + if obj is sys.stderr: + return getattr, (sys, "stderr") + if obj is sys.stdin: + raise pickle.PicklingError("Cannot pickle standard input") + if obj.closed: + raise pickle.PicklingError("Cannot pickle closed files") + if hasattr(obj, "isatty") and obj.isatty(): + raise pickle.PicklingError( + "Cannot pickle files that map to tty objects" + ) + if "r" not in obj.mode and "+" not in obj.mode: + raise pickle.PicklingError( + "Cannot pickle files that are not opened for reading: %s" + % obj.mode + ) + + name = obj.name + + retval = io.StringIO() + + try: + # Read the whole file + curloc = obj.tell() + obj.seek(0) + contents = obj.read() + obj.seek(curloc) + except IOError as e: + raise pickle.PicklingError( + "Cannot pickle file %s as it cannot be read" % name + ) from e + retval.write(contents) + retval.seek(curloc) + + retval.name = name + return _file_reconstructor, (retval,) + + +def _getset_descriptor_reduce(obj): + return getattr, (obj.__objclass__, obj.__name__) + + +def _mappingproxy_reduce(obj): + return types.MappingProxyType, (dict(obj),) + + +def _memoryview_reduce(obj): + return bytes, (obj.tobytes(),) + + +def _module_reduce(obj): + if _is_importable(obj): + return subimport, (obj.__name__,) + else: + obj.__dict__.pop('__builtins__', None) + return dynamic_subimport, (obj.__name__, vars(obj)) + + +def _method_reduce(obj): + return (types.MethodType, (obj.__func__, obj.__self__)) + + +def _logger_reduce(obj): + return logging.getLogger, (obj.name,) + + +def _root_logger_reduce(obj): + return logging.getLogger, () + + +def _property_reduce(obj): + return property, (obj.fget, obj.fset, obj.fdel, obj.__doc__) + + +def _weakset_reduce(obj): + return weakref.WeakSet, (list(obj),) + + +def _dynamic_class_reduce(obj): + """ + Save a class that can't be stored as module global. + + This method is used to serialize classes that are defined inside + functions, or that otherwise can't be serialized as attribute lookups + from global modules. + """ + if Enum is not None and issubclass(obj, Enum): + return ( + _make_skeleton_enum, _enum_getnewargs(obj), _enum_getstate(obj), + None, None, _class_setstate + ) + else: + return ( + _make_skeleton_class, _class_getnewargs(obj), _class_getstate(obj), + None, None, _class_setstate + ) + + +def _class_reduce(obj): + """Select the reducer depending on the dynamic nature of the class obj""" + if obj is type(None): # noqa + return type, (None,) + elif obj is type(Ellipsis): + return type, (Ellipsis,) + elif obj is type(NotImplemented): + return type, (NotImplemented,) + elif obj in _BUILTIN_TYPE_NAMES: + return _builtin_type, (_BUILTIN_TYPE_NAMES[obj],) + elif not _is_importable(obj): + return _dynamic_class_reduce(obj) + return NotImplemented + + +# COLLECTIONS OF OBJECTS STATE SETTERS +# ------------------------------------ +# state setters are called at unpickling time, once the object is created and +# it has to be updated to how it was at unpickling time. + + +def _function_setstate(obj, state): + """Update the state of a dynaamic function. + + As __closure__ and __globals__ are readonly attributes of a function, we + cannot rely on the native setstate routine of pickle.load_build, that calls + setattr on items of the slotstate. Instead, we have to modify them inplace. + """ + state, slotstate = state + obj.__dict__.update(state) + + obj_globals = slotstate.pop("__globals__") + obj_closure = slotstate.pop("__closure__") + # _cloudpickle_subimports is a set of submodules that must be loaded for + # the pickled function to work correctly at unpickling time. Now that these + # submodules are depickled (hence imported), they can be removed from the + # object's state (the object state only served as a reference holder to + # these submodules) + slotstate.pop("_cloudpickle_submodules") + + obj.__globals__.update(obj_globals) + obj.__globals__["__builtins__"] = __builtins__ + + if obj_closure is not None: + for i, cell in enumerate(obj_closure): + try: + value = cell.cell_contents + except ValueError: # cell is empty + continue + cell_set(obj.__closure__[i], value) + + for k, v in slotstate.items(): + setattr(obj, k, v) + + +def _class_setstate(obj, state): + state, slotstate = state + registry = None + for attrname, attr in state.items(): + if attrname == "_abc_impl": + registry = attr + else: + setattr(obj, attrname, attr) + if registry is not None: + for subclass in registry: + obj.register(subclass) + + return obj + + +class CloudPickler(Pickler): + # set of reducers defined and used by cloudpickle (private) + _dispatch_table = {} + _dispatch_table[classmethod] = _classmethod_reduce + _dispatch_table[io.TextIOWrapper] = _file_reduce + _dispatch_table[logging.Logger] = _logger_reduce + _dispatch_table[logging.RootLogger] = _root_logger_reduce + _dispatch_table[memoryview] = _memoryview_reduce + _dispatch_table[property] = _property_reduce + _dispatch_table[staticmethod] = _classmethod_reduce + _dispatch_table[CellType] = _cell_reduce + _dispatch_table[types.CodeType] = _code_reduce + _dispatch_table[types.GetSetDescriptorType] = _getset_descriptor_reduce + _dispatch_table[types.ModuleType] = _module_reduce + _dispatch_table[types.MethodType] = _method_reduce + _dispatch_table[types.MappingProxyType] = _mappingproxy_reduce + _dispatch_table[weakref.WeakSet] = _weakset_reduce + _dispatch_table[typing.TypeVar] = _typevar_reduce + + dispatch_table = ChainMap(_dispatch_table, copyreg.dispatch_table) + + # function reducers are defined as instance methods of CloudPickler + # objects, as they rely on a CloudPickler attribute (globals_ref) + def _dynamic_function_reduce(self, func): + """Reduce a function that is not pickleable via attribute lookup.""" + newargs = self._function_getnewargs(func) + state = _function_getstate(func) + return (types.FunctionType, newargs, state, None, None, + _function_setstate) + + def _function_reduce(self, obj): + """Reducer for function objects. + + If obj is a top-level attribute of a file-backed module, this + reducer returns NotImplemented, making the CloudPickler fallback to + traditional _pickle.Pickler routines to save obj. Otherwise, it reduces + obj using a custom cloudpickle reducer designed specifically to handle + dynamic functions. + + As opposed to cloudpickle.py, There no special handling for builtin + pypy functions because cloudpickle_fast is CPython-specific. + """ + if _is_importable(obj): + return NotImplemented + else: + return self._dynamic_function_reduce(obj) + + def _function_getnewargs(self, func): + code = func.__code__ + + # base_globals represents the future global namespace of func at + # unpickling time. Looking it up and storing it in + # CloudpiPickler.globals_ref allow functions sharing the same globals + # at pickling time to also share them once unpickled, at one condition: + # since globals_ref is an attribute of a CloudPickler instance, and + # that a new CloudPickler is created each time pickle.dump or + # pickle.dumps is called, functions also need to be saved within the + # same invocation of cloudpickle.dump/cloudpickle.dumps (for example: + # cloudpickle.dumps([f1, f2])). There is no such limitation when using + # CloudPickler.dump, as long as the multiple invocations are bound to + # the same CloudPickler. + base_globals = self.globals_ref.setdefault(id(func.__globals__), {}) + + if base_globals == {}: + # Add module attributes used to resolve relative imports + # instructions inside func. + for k in ["__package__", "__name__", "__path__", "__file__"]: + if k in func.__globals__: + base_globals[k] = func.__globals__[k] + + # Do not bind the free variables before the function is created to + # avoid infinite recursion. + if func.__closure__ is None: + closure = None + else: + closure = tuple( + _make_empty_cell() for _ in range(len(code.co_freevars))) + + return code, base_globals, None, None, closure + + def dump(self, obj): + try: + return Pickler.dump(self, obj) + except RuntimeError as e: + if "recursion" in e.args[0]: + msg = ( + "Could not pickle object as excessively deep recursion " + "required." + ) + raise pickle.PicklingError(msg) from e + else: + raise + + if pickle.HIGHEST_PROTOCOL >= 5: + # `CloudPickler.dispatch` is only left for backward compatibility - note + # that when using protocol 5, `CloudPickler.dispatch` is not an + # extension of `Pickler.dispatch` dictionary, because CloudPickler + # subclasses the C-implemented Pickler, which does not expose a + # `dispatch` attribute. Earlier versions of the protocol 5 CloudPickler + # used `CloudPickler.dispatch` as a class-level attribute storing all + # reducers implemented by cloudpickle, but the attribute name was not a + # great choice given the meaning of `Cloudpickler.dispatch` when + # `CloudPickler` extends the pure-python pickler. + dispatch = dispatch_table + + # Implementation of the reducer_override callback, in order to + # efficiently serialize dynamic functions and classes by subclassing + # the C-implemented Pickler. + # TODO: decorrelate reducer_override (which is tied to CPython's + # implementation - would it make sense to backport it to pypy? - and + # pickle's protocol 5 which is implementation agnostic. Currently, the + # availability of both notions coincide on CPython's pickle and the + # pickle5 backport, but it may not be the case anymore when pypy + # implements protocol 5 + def __init__(self, file, protocol=None, buffer_callback=None): + if protocol is None: + protocol = DEFAULT_PROTOCOL + Pickler.__init__( + self, file, protocol=protocol, buffer_callback=buffer_callback + ) + # map functions __globals__ attribute ids, to ensure that functions + # sharing the same global namespace at pickling time also share + # their global namespace at unpickling time. + self.globals_ref = {} + self.proto = int(protocol) + + def reducer_override(self, obj): + """Type-agnostic reducing callback for function and classes. + + For performance reasons, subclasses of the C _pickle.Pickler class + cannot register custom reducers for functions and classes in the + dispatch_table. Reducer for such types must instead implemented in + the special reducer_override method. + + Note that method will be called for any object except a few + builtin-types (int, lists, dicts etc.), which differs from reducers + in the Pickler's dispatch_table, each of them being invoked for + objects of a specific type only. + + This property comes in handy for classes: although most classes are + instances of the ``type`` metaclass, some of them can be instances + of other custom metaclasses (such as enum.EnumMeta for example). In + particular, the metaclass will likely not be known in advance, and + thus cannot be special-cased using an entry in the dispatch_table. + reducer_override, among other things, allows us to register a + reducer that will be called for any class, independently of its + type. + + + Notes: + + * reducer_override has the priority over dispatch_table-registered + reducers. + * reducer_override can be used to fix other limitations of + cloudpickle for other types that suffered from type-specific + reducers, such as Exceptions. See + https://github.com/cloudpipe/cloudpickle/issues/248 + """ + if sys.version_info[:2] < (3, 7) and _is_parametrized_type_hint(obj): # noqa # pragma: no branch + return ( + _create_parametrized_type_hint, + parametrized_type_hint_getinitargs(obj) + ) + t = type(obj) + try: + is_anyclass = issubclass(t, type) + except TypeError: # t is not a class (old Boost; see SF #502085) + is_anyclass = False + + if is_anyclass: + return _class_reduce(obj) + elif isinstance(obj, types.FunctionType): + return self._function_reduce(obj) + else: + # fallback to save_global, including the Pickler's + # distpatch_table + return NotImplemented + + else: + # When reducer_override is not available, hack the pure-Python + # Pickler's types.FunctionType and type savers. Note: the type saver + # must override Pickler.save_global, because pickle.py contains a + # hard-coded call to save_global when pickling meta-classes. + dispatch = Pickler.dispatch.copy() + + def __init__(self, file, protocol=None): + if protocol is None: + protocol = DEFAULT_PROTOCOL + Pickler.__init__(self, file, protocol=protocol) + # map functions __globals__ attribute ids, to ensure that functions + # sharing the same global namespace at pickling time also share + # their global namespace at unpickling time. + self.globals_ref = {} + assert hasattr(self, 'proto') + + def _save_reduce_pickle5(self, func, args, state=None, listitems=None, + dictitems=None, state_setter=None, obj=None): + save = self.save + write = self.write + self.save_reduce( + func, args, state=None, listitems=listitems, + dictitems=dictitems, obj=obj + ) + # backport of the Python 3.8 state_setter pickle operations + save(state_setter) + save(obj) # simple BINGET opcode as obj is already memoized. + save(state) + write(pickle.TUPLE2) + # Trigger a state_setter(obj, state) function call. + write(pickle.REDUCE) + # The purpose of state_setter is to carry-out an + # inplace modification of obj. We do not care about what the + # method might return, so its output is eventually removed from + # the stack. + write(pickle.POP) + + def save_global(self, obj, name=None, pack=struct.pack): + """ + Save a "global". + + The name of this method is somewhat misleading: all types get + dispatched here. + """ + if obj is type(None): # noqa + return self.save_reduce(type, (None,), obj=obj) + elif obj is type(Ellipsis): + return self.save_reduce(type, (Ellipsis,), obj=obj) + elif obj is type(NotImplemented): + return self.save_reduce(type, (NotImplemented,), obj=obj) + elif obj in _BUILTIN_TYPE_NAMES: + return self.save_reduce( + _builtin_type, (_BUILTIN_TYPE_NAMES[obj],), obj=obj) + + if sys.version_info[:2] < (3, 7) and _is_parametrized_type_hint(obj): # noqa # pragma: no branch + # Parametrized typing constructs in Python < 3.7 are not + # compatible with type checks and ``isinstance`` semantics. For + # this reason, it is easier to detect them using a + # duck-typing-based check (``_is_parametrized_type_hint``) than + # to populate the Pickler's dispatch with type-specific savers. + self.save_reduce( + _create_parametrized_type_hint, + parametrized_type_hint_getinitargs(obj), + obj=obj + ) + elif name is not None: + Pickler.save_global(self, obj, name=name) + elif not _is_importable(obj, name=name): + self._save_reduce_pickle5(*_dynamic_class_reduce(obj), obj=obj) + else: + Pickler.save_global(self, obj, name=name) + dispatch[type] = save_global + + def save_function(self, obj, name=None): + """ Registered with the dispatch to handle all function types. + + Determines what kind of function obj is (e.g. lambda, defined at + interactive prompt, etc) and handles the pickling appropriately. + """ + if _is_importable(obj, name=name): + return Pickler.save_global(self, obj, name=name) + elif PYPY and isinstance(obj.__code__, builtin_code_type): + return self.save_pypy_builtin_func(obj) + else: + return self._save_reduce_pickle5( + *self._dynamic_function_reduce(obj), obj=obj + ) + + def save_pypy_builtin_func(self, obj): + """Save pypy equivalent of builtin functions. + PyPy does not have the concept of builtin-functions. Instead, + builtin-functions are simple function instances, but with a + builtin-code attribute. + Most of the time, builtin functions should be pickled by attribute. + But PyPy has flaky support for __qualname__, so some builtin + functions such as float.__new__ will be classified as dynamic. For + this reason only, we created this special routine. Because + builtin-functions are not expected to have closure or globals, + there is no additional hack (compared the one already implemented + in pickle) to protect ourselves from reference cycles. A simple + (reconstructor, newargs, obj.__dict__) tuple is save_reduced. Note + also that PyPy improved their support for __qualname__ in v3.6, so + this routing should be removed when cloudpickle supports only PyPy + 3.6 and later. + """ + rv = (types.FunctionType, (obj.__code__, {}, obj.__name__, + obj.__defaults__, obj.__closure__), + obj.__dict__) + self.save_reduce(*rv, obj=obj) + + dispatch[types.FunctionType] = save_function diff --git a/python/pyspark/cloudpickle/compat.py b/python/pyspark/cloudpickle/compat.py new file mode 100644 index 0000000000000..afa285f62903d --- /dev/null +++ b/python/pyspark/cloudpickle/compat.py @@ -0,0 +1,13 @@ +import sys + + +if sys.version_info < (3, 8): + try: + import pickle5 as pickle # noqa: F401 + from pickle5 import Pickler # noqa: F401 + except ImportError: + import pickle # noqa: F401 + from pickle import _Pickler as Pickler # noqa: F401 +else: + import pickle # noqa: F401 + from _pickle import Pickler # noqa: F401 diff --git a/python/setup.py b/python/setup.py index c456a32fea87c..294a34c7a1916 100755 --- a/python/setup.py +++ b/python/setup.py @@ -161,6 +161,7 @@ def _supports_symlinks(): author_email='dev@spark.apache.org', url='https://github.com/apache/spark/tree/master/python', packages=['pyspark', + 'pyspark.cloudpickle', 'pyspark.mllib', 'pyspark.mllib.linalg', 'pyspark.mllib.stat',