diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/DecisionTreeClassifier.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/DecisionTreeClassifier.scala index 6648e78d8eaf..bcf89766b087 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/DecisionTreeClassifier.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/DecisionTreeClassifier.scala @@ -55,27 +55,27 @@ class DecisionTreeClassifier @Since("1.4.0") ( /** @group setParam */ @Since("1.4.0") - override def setMaxDepth(value: Int): this.type = set(maxDepth, value) + def setMaxDepth(value: Int): this.type = set(maxDepth, value) /** @group setParam */ @Since("1.4.0") - override def setMaxBins(value: Int): this.type = set(maxBins, value) + def setMaxBins(value: Int): this.type = set(maxBins, value) /** @group setParam */ @Since("1.4.0") - override def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) + def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) /** @group setParam */ @Since("1.4.0") - override def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) + def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) /** @group expertSetParam */ @Since("1.4.0") - override def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) + def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) /** @group expertSetParam */ @Since("1.4.0") - override def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) + def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) /** * Specifies how often to checkpoint the cached node IDs. @@ -87,15 +87,15 @@ class DecisionTreeClassifier @Since("1.4.0") ( * @group setParam */ @Since("1.4.0") - override def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) + def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) /** @group setParam */ @Since("1.4.0") - override def setImpurity(value: String): this.type = set(impurity, value) + def setImpurity(value: String): this.type = set(impurity, value) /** @group setParam */ @Since("1.6.0") - override def setSeed(value: Long): this.type = set(seed, value) + def setSeed(value: Long): this.type = set(seed, value) override protected def train( dataset: Dataset[_]): DecisionTreeClassificationModel = instrumented { instr => diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/GBTClassifier.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/GBTClassifier.scala index 62c6bdbdeb28..fab8155add5a 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/GBTClassifier.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/GBTClassifier.scala @@ -69,27 +69,27 @@ class GBTClassifier @Since("1.4.0") ( /** @group setParam */ @Since("1.4.0") - override def setMaxDepth(value: Int): this.type = set(maxDepth, value) + def setMaxDepth(value: Int): this.type = set(maxDepth, value) /** @group setParam */ @Since("1.4.0") - override def setMaxBins(value: Int): this.type = set(maxBins, value) + def setMaxBins(value: Int): this.type = set(maxBins, value) /** @group setParam */ @Since("1.4.0") - override def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) + def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) /** @group setParam */ @Since("1.4.0") - override def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) + def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) /** @group expertSetParam */ @Since("1.4.0") - override def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) + def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) /** @group expertSetParam */ @Since("1.4.0") - override def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) + def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) /** * Specifies how often to checkpoint the cached node IDs. @@ -101,7 +101,7 @@ class GBTClassifier @Since("1.4.0") ( * @group setParam */ @Since("1.4.0") - override def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) + def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) /** * The impurity setting is ignored for GBT models. @@ -110,7 +110,7 @@ class GBTClassifier @Since("1.4.0") ( * @group setParam */ @Since("1.4.0") - override def setImpurity(value: String): this.type = { + def setImpurity(value: String): this.type = { logWarning("GBTClassifier.setImpurity should NOT be used") this } @@ -119,25 +119,25 @@ class GBTClassifier @Since("1.4.0") ( /** @group setParam */ @Since("1.4.0") - override def setSubsamplingRate(value: Double): this.type = set(subsamplingRate, value) + def setSubsamplingRate(value: Double): this.type = set(subsamplingRate, value) /** @group setParam */ @Since("1.4.0") - override def setSeed(value: Long): this.type = set(seed, value) + def setSeed(value: Long): this.type = set(seed, value) // Parameters from GBTParams: /** @group setParam */ @Since("1.4.0") - override def setMaxIter(value: Int): this.type = set(maxIter, value) + def setMaxIter(value: Int): this.type = set(maxIter, value) /** @group setParam */ @Since("1.4.0") - override def setStepSize(value: Double): this.type = set(stepSize, value) + def setStepSize(value: Double): this.type = set(stepSize, value) /** @group setParam */ @Since("2.3.0") - override def setFeatureSubsetStrategy(value: String): this.type = + def setFeatureSubsetStrategy(value: String): this.type = set(featureSubsetStrategy, value) // Parameters from GBTClassifierParams: diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/RandomForestClassifier.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/RandomForestClassifier.scala index 57132381b647..05fff8885fbf 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/RandomForestClassifier.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/RandomForestClassifier.scala @@ -57,27 +57,27 @@ class RandomForestClassifier @Since("1.4.0") ( /** @group setParam */ @Since("1.4.0") - override def setMaxDepth(value: Int): this.type = set(maxDepth, value) + def setMaxDepth(value: Int): this.type = set(maxDepth, value) /** @group setParam */ @Since("1.4.0") - override def setMaxBins(value: Int): this.type = set(maxBins, value) + def setMaxBins(value: Int): this.type = set(maxBins, value) /** @group setParam */ @Since("1.4.0") - override def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) + def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) /** @group setParam */ @Since("1.4.0") - override def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) + def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) /** @group expertSetParam */ @Since("1.4.0") - override def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) + def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) /** @group expertSetParam */ @Since("1.4.0") - override def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) + def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) /** * Specifies how often to checkpoint the cached node IDs. @@ -89,31 +89,31 @@ class RandomForestClassifier @Since("1.4.0") ( * @group setParam */ @Since("1.4.0") - override def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) + def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) /** @group setParam */ @Since("1.4.0") - override def setImpurity(value: String): this.type = set(impurity, value) + def setImpurity(value: String): this.type = set(impurity, value) // Parameters from TreeEnsembleParams: /** @group setParam */ @Since("1.4.0") - override def setSubsamplingRate(value: Double): this.type = set(subsamplingRate, value) + def setSubsamplingRate(value: Double): this.type = set(subsamplingRate, value) /** @group setParam */ @Since("1.4.0") - override def setSeed(value: Long): this.type = set(seed, value) + def setSeed(value: Long): this.type = set(seed, value) // Parameters from RandomForestParams: /** @group setParam */ @Since("1.4.0") - override def setNumTrees(value: Int): this.type = set(numTrees, value) + def setNumTrees(value: Int): this.type = set(numTrees, value) /** @group setParam */ @Since("1.4.0") - override def setFeatureSubsetStrategy(value: String): this.type = + def setFeatureSubsetStrategy(value: String): this.type = set(featureSubsetStrategy, value) override protected def train( diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/DecisionTreeRegressor.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/DecisionTreeRegressor.scala index c9de85de42fa..faadc4d7b4cc 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/regression/DecisionTreeRegressor.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/regression/DecisionTreeRegressor.scala @@ -54,27 +54,27 @@ class DecisionTreeRegressor @Since("1.4.0") (@Since("1.4.0") override val uid: S // Override parameter setters from parent trait for Java API compatibility. /** @group setParam */ @Since("1.4.0") - override def setMaxDepth(value: Int): this.type = set(maxDepth, value) + def setMaxDepth(value: Int): this.type = set(maxDepth, value) /** @group setParam */ @Since("1.4.0") - override def setMaxBins(value: Int): this.type = set(maxBins, value) + def setMaxBins(value: Int): this.type = set(maxBins, value) /** @group setParam */ @Since("1.4.0") - override def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) + def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) /** @group setParam */ @Since("1.4.0") - override def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) + def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) /** @group expertSetParam */ @Since("1.4.0") - override def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) + def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) /** @group expertSetParam */ @Since("1.4.0") - override def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) + def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) /** * Specifies how often to checkpoint the cached node IDs. @@ -86,15 +86,15 @@ class DecisionTreeRegressor @Since("1.4.0") (@Since("1.4.0") override val uid: S * @group setParam */ @Since("1.4.0") - override def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) + def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) /** @group setParam */ @Since("1.4.0") - override def setImpurity(value: String): this.type = set(impurity, value) + def setImpurity(value: String): this.type = set(impurity, value) /** @group setParam */ @Since("1.6.0") - override def setSeed(value: Long): this.type = set(seed, value) + def setSeed(value: Long): this.type = set(seed, value) /** @group setParam */ @Since("2.0.0") diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/GBTRegressor.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/GBTRegressor.scala index 07f88d8d5f84..186fa2399af0 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/regression/GBTRegressor.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/regression/GBTRegressor.scala @@ -34,7 +34,6 @@ import org.apache.spark.ml.util.DefaultParamsReader.Metadata import org.apache.spark.ml.util.Instrumentation.instrumented import org.apache.spark.mllib.tree.configuration.{Algo => OldAlgo} import org.apache.spark.mllib.tree.model.{GradientBoostedTreesModel => OldGBTModel} -import org.apache.spark.rdd.RDD import org.apache.spark.sql.{DataFrame, Dataset, Row} import org.apache.spark.sql.functions._ @@ -69,27 +68,27 @@ class GBTRegressor @Since("1.4.0") (@Since("1.4.0") override val uid: String) /** @group setParam */ @Since("1.4.0") - override def setMaxDepth(value: Int): this.type = set(maxDepth, value) + def setMaxDepth(value: Int): this.type = set(maxDepth, value) /** @group setParam */ @Since("1.4.0") - override def setMaxBins(value: Int): this.type = set(maxBins, value) + def setMaxBins(value: Int): this.type = set(maxBins, value) /** @group setParam */ @Since("1.4.0") - override def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) + def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) /** @group setParam */ @Since("1.4.0") - override def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) + def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) /** @group expertSetParam */ @Since("1.4.0") - override def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) + def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) /** @group expertSetParam */ @Since("1.4.0") - override def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) + def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) /** * Specifies how often to checkpoint the cached node IDs. @@ -101,7 +100,7 @@ class GBTRegressor @Since("1.4.0") (@Since("1.4.0") override val uid: String) * @group setParam */ @Since("1.4.0") - override def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) + def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) /** * The impurity setting is ignored for GBT models. @@ -110,7 +109,7 @@ class GBTRegressor @Since("1.4.0") (@Since("1.4.0") override val uid: String) * @group setParam */ @Since("1.4.0") - override def setImpurity(value: String): this.type = { + def setImpurity(value: String): this.type = { logWarning("GBTRegressor.setImpurity should NOT be used") this } @@ -119,21 +118,21 @@ class GBTRegressor @Since("1.4.0") (@Since("1.4.0") override val uid: String) /** @group setParam */ @Since("1.4.0") - override def setSubsamplingRate(value: Double): this.type = set(subsamplingRate, value) + def setSubsamplingRate(value: Double): this.type = set(subsamplingRate, value) /** @group setParam */ @Since("1.4.0") - override def setSeed(value: Long): this.type = set(seed, value) + def setSeed(value: Long): this.type = set(seed, value) // Parameters from GBTParams: /** @group setParam */ @Since("1.4.0") - override def setMaxIter(value: Int): this.type = set(maxIter, value) + def setMaxIter(value: Int): this.type = set(maxIter, value) /** @group setParam */ @Since("1.4.0") - override def setStepSize(value: Double): this.type = set(stepSize, value) + def setStepSize(value: Double): this.type = set(stepSize, value) // Parameters from GBTRegressorParams: @@ -143,7 +142,7 @@ class GBTRegressor @Since("1.4.0") (@Since("1.4.0") override val uid: String) /** @group setParam */ @Since("2.3.0") - override def setFeatureSubsetStrategy(value: String): this.type = + def setFeatureSubsetStrategy(value: String): this.type = set(featureSubsetStrategy, value) /** @group setParam */ diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/RandomForestRegressor.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/RandomForestRegressor.scala index 66d57ad6c434..7f5e668ca71d 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/regression/RandomForestRegressor.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/regression/RandomForestRegressor.scala @@ -56,27 +56,27 @@ class RandomForestRegressor @Since("1.4.0") (@Since("1.4.0") override val uid: S /** @group setParam */ @Since("1.4.0") - override def setMaxDepth(value: Int): this.type = set(maxDepth, value) + def setMaxDepth(value: Int): this.type = set(maxDepth, value) /** @group setParam */ @Since("1.4.0") - override def setMaxBins(value: Int): this.type = set(maxBins, value) + def setMaxBins(value: Int): this.type = set(maxBins, value) /** @group setParam */ @Since("1.4.0") - override def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) + def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) /** @group setParam */ @Since("1.4.0") - override def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) + def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) /** @group expertSetParam */ @Since("1.4.0") - override def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) + def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) /** @group expertSetParam */ @Since("1.4.0") - override def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) + def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) /** * Specifies how often to checkpoint the cached node IDs. @@ -88,31 +88,31 @@ class RandomForestRegressor @Since("1.4.0") (@Since("1.4.0") override val uid: S * @group setParam */ @Since("1.4.0") - override def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) + def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) /** @group setParam */ @Since("1.4.0") - override def setImpurity(value: String): this.type = set(impurity, value) + def setImpurity(value: String): this.type = set(impurity, value) // Parameters from TreeEnsembleParams: /** @group setParam */ @Since("1.4.0") - override def setSubsamplingRate(value: Double): this.type = set(subsamplingRate, value) + def setSubsamplingRate(value: Double): this.type = set(subsamplingRate, value) /** @group setParam */ @Since("1.4.0") - override def setSeed(value: Long): this.type = set(seed, value) + def setSeed(value: Long): this.type = set(seed, value) // Parameters from RandomForestParams: /** @group setParam */ @Since("1.4.0") - override def setNumTrees(value: Int): this.type = set(numTrees, value) + def setNumTrees(value: Int): this.type = set(numTrees, value) /** @group setParam */ @Since("1.4.0") - override def setFeatureSubsetStrategy(value: String): this.type = + def setFeatureSubsetStrategy(value: String): this.type = set(featureSubsetStrategy, value) override protected def train( diff --git a/mllib/src/main/scala/org/apache/spark/ml/tree/treeParams.scala b/mllib/src/main/scala/org/apache/spark/ml/tree/treeParams.scala index f1e3836ebe47..c06c68d44ae1 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/tree/treeParams.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/tree/treeParams.scala @@ -110,80 +110,24 @@ private[ml] trait DecisionTreeParams extends PredictorParams setDefault(maxDepth -> 5, maxBins -> 32, minInstancesPerNode -> 1, minInfoGain -> 0.0, maxMemoryInMB -> 256, cacheNodeIds -> false, checkpointInterval -> 10) - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group setParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setMaxDepth(value: Int): this.type = set(maxDepth, value) - /** @group getParam */ final def getMaxDepth: Int = $(maxDepth) - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group setParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setMaxBins(value: Int): this.type = set(maxBins, value) - /** @group getParam */ final def getMaxBins: Int = $(maxBins) - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group setParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value) - /** @group getParam */ final def getMinInstancesPerNode: Int = $(minInstancesPerNode) - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group setParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setMinInfoGain(value: Double): this.type = set(minInfoGain, value) - /** @group getParam */ final def getMinInfoGain: Double = $(minInfoGain) - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group setParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setSeed(value: Long): this.type = set(seed, value) - - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group expertSetParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value) - /** @group expertGetParam */ final def getMaxMemoryInMB: Int = $(maxMemoryInMB) - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group expertSetParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value) - /** @group expertGetParam */ final def getCacheNodeIds: Boolean = $(cacheNodeIds) - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group setParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value) - /** (private[ml]) Create a Strategy instance to use with the old API. */ private[ml] def getOldStrategy( categoricalFeatures: Map[Int, Int], @@ -226,13 +170,6 @@ private[ml] trait TreeClassifierParams extends Params { setDefault(impurity -> "gini") - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group setParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setImpurity(value: String): this.type = set(impurity, value) - /** @group getParam */ final def getImpurity: String = $(impurity).toLowerCase(Locale.ROOT) @@ -273,13 +210,6 @@ private[ml] trait HasVarianceImpurity extends Params { setDefault(impurity -> "variance") - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group setParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setImpurity(value: String): this.type = set(impurity, value) - /** @group getParam */ final def getImpurity: String = $(impurity).toLowerCase(Locale.ROOT) @@ -346,13 +276,6 @@ private[ml] trait TreeEnsembleParams extends DecisionTreeParams { setDefault(subsamplingRate -> 1.0) - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group setParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setSubsamplingRate(value: Double): this.type = set(subsamplingRate, value) - /** @group getParam */ final def getSubsamplingRate: Double = $(subsamplingRate) @@ -406,13 +329,6 @@ private[ml] trait TreeEnsembleParams extends DecisionTreeParams { setDefault(featureSubsetStrategy -> "auto") - /** - * @deprecated This method is deprecated and will be removed in 3.0.0 - * @group setParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setFeatureSubsetStrategy(value: String): this.type = set(featureSubsetStrategy, value) - /** @group getParam */ final def getFeatureSubsetStrategy: String = $(featureSubsetStrategy).toLowerCase(Locale.ROOT) } @@ -440,13 +356,6 @@ private[ml] trait RandomForestParams extends TreeEnsembleParams { setDefault(numTrees -> 20) - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group setParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setNumTrees(value: Int): this.type = set(numTrees, value) - /** @group getParam */ final def getNumTrees: Int = $(numTrees) } @@ -491,13 +400,6 @@ private[ml] trait GBTParams extends TreeEnsembleParams with HasMaxIter with HasS @Since("2.4.0") final def getValidationTol: Double = $(validationTol) - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group setParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setMaxIter(value: Int): this.type = set(maxIter, value) - /** * Param for Step size (a.k.a. learning rate) in interval (0, 1] for shrinking * the contribution of each estimator. @@ -508,13 +410,6 @@ private[ml] trait GBTParams extends TreeEnsembleParams with HasMaxIter with HasS "(a.k.a. learning rate) in interval (0, 1] for shrinking the contribution of each estimator.", ParamValidators.inRange(0, 1, lowerInclusive = false, upperInclusive = true)) - /** - * @deprecated This method is deprecated and will be removed in 3.0.0. - * @group setParam - */ - @deprecated("This method is deprecated and will be removed in 3.0.0.", "2.1.0") - def setStepSize(value: Double): this.type = set(stepSize, value) - setDefault(maxIter -> 20, stepSize -> 0.1, validationTol -> 0.01) setDefault(featureSubsetStrategy -> "all") diff --git a/project/MimaExcludes.scala b/project/MimaExcludes.scala index b750535e8a70..9089c7d9ffc7 100644 --- a/project/MimaExcludes.scala +++ b/project/MimaExcludes.scala @@ -36,6 +36,76 @@ object MimaExcludes { // Exclude rules for 3.0.x lazy val v30excludes = v24excludes ++ Seq( + // [SPARK-26127] Remove deprecated setters from tree regression and classification models + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.DecisionTreeClassificationModel.setSeed"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.DecisionTreeClassificationModel.setMinInfoGain"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.DecisionTreeClassificationModel.setCacheNodeIds"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.DecisionTreeClassificationModel.setCheckpointInterval"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.DecisionTreeClassificationModel.setMaxDepth"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.DecisionTreeClassificationModel.setImpurity"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.DecisionTreeClassificationModel.setMaxMemoryInMB"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.DecisionTreeClassificationModel.setMaxBins"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.DecisionTreeClassificationModel.setMinInstancesPerNode"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setSeed"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setMinInfoGain"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setSubsamplingRate"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setMaxIter"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setCacheNodeIds"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setCheckpointInterval"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setMaxDepth"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setImpurity"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setMaxMemoryInMB"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setStepSize"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setMaxBins"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setMinInstancesPerNode"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setFeatureSubsetStrategy"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.RandomForestClassificationModel.setSeed"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.RandomForestClassificationModel.setMinInfoGain"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.RandomForestClassificationModel.setSubsamplingRate"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.RandomForestClassificationModel.setCacheNodeIds"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.RandomForestClassificationModel.setCheckpointInterval"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.RandomForestClassificationModel.setMaxDepth"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.RandomForestClassificationModel.setImpurity"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.RandomForestClassificationModel.setMaxMemoryInMB"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.RandomForestClassificationModel.setFeatureSubsetStrategy"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.RandomForestClassificationModel.setMaxBins"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.RandomForestClassificationModel.setMinInstancesPerNode"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.classification.RandomForestClassificationModel.setNumTrees"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.DecisionTreeRegressionModel.setSeed"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.DecisionTreeRegressionModel.setMinInfoGain"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.DecisionTreeRegressionModel.setCacheNodeIds"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.DecisionTreeRegressionModel.setCheckpointInterval"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.DecisionTreeRegressionModel.setMaxDepth"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.DecisionTreeRegressionModel.setImpurity"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.DecisionTreeRegressionModel.setMaxMemoryInMB"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.DecisionTreeRegressionModel.setMaxBins"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.DecisionTreeRegressionModel.setMinInstancesPerNode"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setSeed"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setMinInfoGain"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setSubsamplingRate"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setMaxIter"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setCacheNodeIds"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setCheckpointInterval"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setMaxDepth"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setImpurity"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setMaxMemoryInMB"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setStepSize"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setMaxBins"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setMinInstancesPerNode"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setFeatureSubsetStrategy"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.RandomForestRegressionModel.setSeed"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.RandomForestRegressionModel.setMinInfoGain"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.RandomForestRegressionModel.setSubsamplingRate"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.RandomForestRegressionModel.setCacheNodeIds"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.RandomForestRegressionModel.setCheckpointInterval"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.RandomForestRegressionModel.setMaxDepth"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.RandomForestRegressionModel.setImpurity"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.RandomForestRegressionModel.setMaxMemoryInMB"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.RandomForestRegressionModel.setFeatureSubsetStrategy"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.RandomForestRegressionModel.setMaxBins"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.RandomForestRegressionModel.setMinInstancesPerNode"), + ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.ml.regression.RandomForestRegressionModel.setNumTrees"), + // [SPARK-26124] Update plugins, including MiMa ProblemFilters.exclude[InheritedNewAbstractMethodProblem]("org.apache.spark.sql.sources.v2.reader.SupportsPushDownRequiredColumns.build"), ProblemFilters.exclude[InheritedNewAbstractMethodProblem]("org.apache.spark.sql.sources.v2.reader.SupportsReportStatistics.fullSchema"), @@ -50,15 +120,11 @@ object MimaExcludes { ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.ml.feature.LabeledPointBeanInfo"), // [SPARK-25959] GBTClassifier picks wrong impurity stats on loading - ProblemFilters.exclude[IncompatibleResultTypeProblem]("org.apache.spark.ml.classification.GBTClassificationModel.setImpurity"), ProblemFilters.exclude[InheritedNewAbstractMethodProblem]("org.apache.spark.ml.tree.HasVarianceImpurity.org$apache$spark$ml$tree$HasVarianceImpurity$_setter_$impurity_="), ProblemFilters.exclude[InheritedNewAbstractMethodProblem]("org.apache.spark.ml.tree.HasVarianceImpurity.org$apache$spark$ml$tree$HasVarianceImpurity$_setter_$impurity_="), ProblemFilters.exclude[InheritedNewAbstractMethodProblem]("org.apache.spark.ml.tree.HasVarianceImpurity.org$apache$spark$ml$tree$HasVarianceImpurity$_setter_$impurity_="), ProblemFilters.exclude[InheritedNewAbstractMethodProblem]("org.apache.spark.ml.tree.HasVarianceImpurity.org$apache$spark$ml$tree$HasVarianceImpurity$_setter_$impurity_="), ProblemFilters.exclude[InheritedNewAbstractMethodProblem]("org.apache.spark.ml.tree.HasVarianceImpurity.org$apache$spark$ml$tree$HasVarianceImpurity$_setter_$impurity_="), - ProblemFilters.exclude[IncompatibleResultTypeProblem]("org.apache.spark.ml.regression.DecisionTreeRegressionModel.setImpurity"), - ProblemFilters.exclude[IncompatibleResultTypeProblem]("org.apache.spark.ml.regression.GBTRegressionModel.setImpurity"), - ProblemFilters.exclude[IncompatibleResultTypeProblem]("org.apache.spark.ml.regression.RandomForestRegressionModel.setImpurity"), // [SPARK-25908][CORE][SQL] Remove old deprecated items in Spark 3 ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.BarrierTaskContext.isRunningLocally"),