diff --git a/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala index 75c2aeb14678..1a39e15606d4 100644 --- a/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala @@ -2145,10 +2145,11 @@ class LogisticRegressionSuite extends MLTest with DefaultReadWriteTest { test("multinomial logistic regression with intercept with elasticnet regularization") { val trainer1 = (new LogisticRegression).setFitIntercept(true).setWeightCol("weight") .setElasticNetParam(0.5).setRegParam(0.1).setStandardization(true) - .setMaxIter(300).setTol(1e-10) + .setMaxIter(220).setTol(1e-10) + val trainer2 = (new LogisticRegression).setFitIntercept(true).setWeightCol("weight") .setElasticNetParam(0.5).setRegParam(0.1).setStandardization(false) - .setMaxIter(300).setTol(1e-10) + .setMaxIter(90).setTol(1e-10) val model1 = trainer1.fit(multinomialDataset) val model2 = trainer2.fit(multinomialDataset) @@ -2234,8 +2235,8 @@ class LogisticRegressionSuite extends MLTest with DefaultReadWriteTest { 0.0, 0.0, 0.0, 0.0), isTransposed = true) val interceptsR = Vectors.dense(-0.38857157, 0.62492165, -0.2363501) - assert(model1.coefficientMatrix ~== coefficientsRStd absTol 0.01) - assert(model1.interceptVector ~== interceptsRStd absTol 0.01) + assert(model1.coefficientMatrix ~== coefficientsRStd absTol 0.05) + assert(model1.interceptVector ~== interceptsRStd absTol 0.1) assert(model1.interceptVector.toArray.sum ~== 0.0 absTol eps) assert(model2.coefficientMatrix ~== coefficientsR absTol 0.01) assert(model2.interceptVector ~== interceptsR absTol 0.01)