diff --git a/mllib/src/main/scala/org/apache/spark/ml/clustering/PowerIterationClustering.scala b/mllib/src/main/scala/org/apache/spark/ml/clustering/PowerIterationClustering.scala
new file mode 100644
index 000000000000..2c30a1d9aa94
--- /dev/null
+++ b/mllib/src/main/scala/org/apache/spark/ml/clustering/PowerIterationClustering.scala
@@ -0,0 +1,256 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.ml.clustering
+
+import org.apache.spark.annotation.{Experimental, Since}
+import org.apache.spark.ml.Transformer
+import org.apache.spark.ml.param._
+import org.apache.spark.ml.param.shared._
+import org.apache.spark.ml.util._
+import org.apache.spark.mllib.clustering.{PowerIterationClustering => MLlibPowerIterationClustering}
+import org.apache.spark.rdd.RDD
+import org.apache.spark.sql.{DataFrame, Dataset, Row}
+import org.apache.spark.sql.functions.col
+import org.apache.spark.sql.types._
+
+/**
+ * Common params for PowerIterationClustering
+ */
+private[clustering] trait PowerIterationClusteringParams extends Params with HasMaxIter
+ with HasPredictionCol {
+
+ /**
+ * The number of clusters to create (k). Must be > 1. Default: 2.
+ * @group param
+ */
+ @Since("2.4.0")
+ final val k = new IntParam(this, "k", "The number of clusters to create. " +
+ "Must be > 1.", ParamValidators.gt(1))
+
+ /** @group getParam */
+ @Since("2.4.0")
+ def getK: Int = $(k)
+
+ /**
+ * Param for the initialization algorithm. This can be either "random" to use a random vector
+ * as vertex properties, or "degree" to use a normalized sum of similarities with other vertices.
+ * Default: random.
+ * @group expertParam
+ */
+ @Since("2.4.0")
+ final val initMode = {
+ val allowedParams = ParamValidators.inArray(Array("random", "degree"))
+ new Param[String](this, "initMode", "The initialization algorithm. This can be either " +
+ "'random' to use a random vector as vertex properties, or 'degree' to use a normalized sum " +
+ "of similarities with other vertices. Supported options: 'random' and 'degree'.",
+ allowedParams)
+ }
+
+ /** @group expertGetParam */
+ @Since("2.4.0")
+ def getInitMode: String = $(initMode)
+
+ /**
+ * Param for the name of the input column for vertex IDs.
+ * Default: "id"
+ * @group param
+ */
+ @Since("2.4.0")
+ val idCol = new Param[String](this, "idCol", "Name of the input column for vertex IDs.",
+ (value: String) => value.nonEmpty)
+
+ setDefault(idCol, "id")
+
+ /** @group getParam */
+ @Since("2.4.0")
+ def getIdCol: String = getOrDefault(idCol)
+
+ /**
+ * Param for the name of the input column for neighbors in the adjacency list representation.
+ * Default: "neighbors"
+ * @group param
+ */
+ @Since("2.4.0")
+ val neighborsCol = new Param[String](this, "neighborsCol",
+ "Name of the input column for neighbors in the adjacency list representation.",
+ (value: String) => value.nonEmpty)
+
+ setDefault(neighborsCol, "neighbors")
+
+ /** @group getParam */
+ @Since("2.4.0")
+ def getNeighborsCol: String = $(neighborsCol)
+
+ /**
+ * Param for the name of the input column for neighbors in the adjacency list representation.
+ * Default: "similarities"
+ * @group param
+ */
+ @Since("2.4.0")
+ val similaritiesCol = new Param[String](this, "similaritiesCol",
+ "Name of the input column for neighbors in the adjacency list representation.",
+ (value: String) => value.nonEmpty)
+
+ setDefault(similaritiesCol, "similarities")
+
+ /** @group getParam */
+ @Since("2.4.0")
+ def getSimilaritiesCol: String = $(similaritiesCol)
+
+ protected def validateAndTransformSchema(schema: StructType): StructType = {
+ SchemaUtils.checkColumnTypes(schema, $(idCol), Seq(IntegerType, LongType))
+ SchemaUtils.checkColumnTypes(schema, $(neighborsCol),
+ Seq(ArrayType(IntegerType, containsNull = false),
+ ArrayType(LongType, containsNull = false)))
+ SchemaUtils.checkColumnTypes(schema, $(similaritiesCol),
+ Seq(ArrayType(FloatType, containsNull = false),
+ ArrayType(DoubleType, containsNull = false)))
+ SchemaUtils.appendColumn(schema, $(predictionCol), IntegerType)
+ }
+}
+
+/**
+ * :: Experimental ::
+ * Power Iteration Clustering (PIC), a scalable graph clustering algorithm developed by
+ * Lin and Cohen. From the abstract:
+ * PIC finds a very low-dimensional embedding of a dataset using truncated power
+ * iteration on a normalized pair-wise similarity matrix of the data.
+ *
+ * PIC takes an affinity matrix between items (or vertices) as input. An affinity matrix
+ * is a symmetric matrix whose entries are non-negative similarities between items.
+ * PIC takes this matrix (or graph) as an adjacency matrix. Specifically, each input row includes:
+ * - `idCol`: vertex ID
+ * - `neighborsCol`: neighbors of vertex in `idCol`
+ * - `similaritiesCol`: non-negative weights (similarities) of edges between the vertex
+ * in `idCol` and each neighbor in `neighborsCol`
+ * PIC returns a cluster assignment for each input vertex. It appends a new column `predictionCol`
+ * containing the cluster assignment in `[0,k)` for each row (vertex).
+ *
+ * Notes:
+ * - [[PowerIterationClustering]] is a transformer with an expensive [[transform]] operation.
+ * Transform runs the iterative PIC algorithm to cluster the whole input dataset.
+ * - Input validation: This validates that similarities are non-negative but does NOT validate
+ * that the input matrix is symmetric.
+ *
+ * @see
+ * Spectral clustering (Wikipedia)
+ */
+@Since("2.4.0")
+@Experimental
+class PowerIterationClustering private[clustering] (
+ @Since("2.4.0") override val uid: String)
+ extends Transformer with PowerIterationClusteringParams with DefaultParamsWritable {
+
+ setDefault(
+ k -> 2,
+ maxIter -> 20,
+ initMode -> "random")
+
+ @Since("2.4.0")
+ def this() = this(Identifiable.randomUID("PowerIterationClustering"))
+
+ /** @group setParam */
+ @Since("2.4.0")
+ def setPredictionCol(value: String): this.type = set(predictionCol, value)
+
+ /** @group setParam */
+ @Since("2.4.0")
+ def setK(value: Int): this.type = set(k, value)
+
+ /** @group expertSetParam */
+ @Since("2.4.0")
+ def setInitMode(value: String): this.type = set(initMode, value)
+
+ /** @group setParam */
+ @Since("2.4.0")
+ def setMaxIter(value: Int): this.type = set(maxIter, value)
+
+ /** @group setParam */
+ @Since("2.4.0")
+ def setIdCol(value: String): this.type = set(idCol, value)
+
+ /** @group setParam */
+ @Since("2.4.0")
+ def setNeighborsCol(value: String): this.type = set(neighborsCol, value)
+
+ /** @group setParam */
+ @Since("2.4.0")
+ def setSimilaritiesCol(value: String): this.type = set(similaritiesCol, value)
+
+ @Since("2.4.0")
+ override def transform(dataset: Dataset[_]): DataFrame = {
+ transformSchema(dataset.schema, logging = true)
+
+ val sparkSession = dataset.sparkSession
+ val idColValue = $(idCol)
+ val rdd: RDD[(Long, Long, Double)] =
+ dataset.select(
+ col($(idCol)).cast(LongType),
+ col($(neighborsCol)).cast(ArrayType(LongType, containsNull = false)),
+ col($(similaritiesCol)).cast(ArrayType(DoubleType, containsNull = false))
+ ).rdd.flatMap {
+ case Row(id: Long, nbrs: Seq[_], sims: Seq[_]) =>
+ require(nbrs.size == sims.size, s"The length of the neighbor ID list must be " +
+ s"equal to the the length of the neighbor similarity list. Row for ID " +
+ s"$idColValue=$id has neighbor ID list of length ${nbrs.length} but similarity list " +
+ s"of length ${sims.length}.")
+ nbrs.asInstanceOf[Seq[Long]].zip(sims.asInstanceOf[Seq[Double]]).map {
+ case (nbr, similarity) => (id, nbr, similarity)
+ }
+ }
+ val algorithm = new MLlibPowerIterationClustering()
+ .setK($(k))
+ .setInitializationMode($(initMode))
+ .setMaxIterations($(maxIter))
+ val model = algorithm.run(rdd)
+
+ val predictionsRDD: RDD[Row] = model.assignments.map { assignment =>
+ Row(assignment.id, assignment.cluster)
+ }
+
+ val predictionsSchema = StructType(Seq(
+ StructField($(idCol), LongType, nullable = false),
+ StructField($(predictionCol), IntegerType, nullable = false)))
+ val predictions = {
+ val uncastPredictions = sparkSession.createDataFrame(predictionsRDD, predictionsSchema)
+ dataset.schema($(idCol)).dataType match {
+ case _: LongType =>
+ uncastPredictions
+ case otherType =>
+ uncastPredictions.select(col($(idCol)).cast(otherType).alias($(idCol)))
+ }
+ }
+
+ dataset.join(predictions, $(idCol))
+ }
+
+ @Since("2.4.0")
+ override def transformSchema(schema: StructType): StructType = {
+ validateAndTransformSchema(schema)
+ }
+
+ @Since("2.4.0")
+ override def copy(extra: ParamMap): PowerIterationClustering = defaultCopy(extra)
+}
+
+@Since("2.4.0")
+object PowerIterationClustering extends DefaultParamsReadable[PowerIterationClustering] {
+
+ @Since("2.4.0")
+ override def load(path: String): PowerIterationClustering = super.load(path)
+}
diff --git a/mllib/src/test/scala/org/apache/spark/ml/clustering/PowerIterationClusteringSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/clustering/PowerIterationClusteringSuite.scala
new file mode 100644
index 000000000000..65328df17baf
--- /dev/null
+++ b/mllib/src/test/scala/org/apache/spark/ml/clustering/PowerIterationClusteringSuite.scala
@@ -0,0 +1,238 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.ml.clustering
+
+import scala.collection.mutable
+
+import org.apache.spark.{SparkException, SparkFunSuite}
+import org.apache.spark.ml.util.DefaultReadWriteTest
+import org.apache.spark.mllib.util.MLlibTestSparkContext
+import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
+import org.apache.spark.sql.functions.col
+import org.apache.spark.sql.types._
+
+
+class PowerIterationClusteringSuite extends SparkFunSuite
+ with MLlibTestSparkContext with DefaultReadWriteTest {
+
+ @transient var data: Dataset[_] = _
+ final val r1 = 1.0
+ final val n1 = 10
+ final val r2 = 4.0
+ final val n2 = 40
+
+ override def beforeAll(): Unit = {
+ super.beforeAll()
+
+ data = PowerIterationClusteringSuite.generatePICData(spark, r1, r2, n1, n2)
+ }
+
+ test("default parameters") {
+ val pic = new PowerIterationClustering()
+
+ assert(pic.getK === 2)
+ assert(pic.getMaxIter === 20)
+ assert(pic.getInitMode === "random")
+ assert(pic.getPredictionCol === "prediction")
+ assert(pic.getIdCol === "id")
+ assert(pic.getNeighborsCol === "neighbors")
+ assert(pic.getSimilaritiesCol === "similarities")
+ }
+
+ test("parameter validation") {
+ intercept[IllegalArgumentException] {
+ new PowerIterationClustering().setK(1)
+ }
+ intercept[IllegalArgumentException] {
+ new PowerIterationClustering().setInitMode("no_such_a_mode")
+ }
+ intercept[IllegalArgumentException] {
+ new PowerIterationClustering().setIdCol("")
+ }
+ intercept[IllegalArgumentException] {
+ new PowerIterationClustering().setNeighborsCol("")
+ }
+ intercept[IllegalArgumentException] {
+ new PowerIterationClustering().setSimilaritiesCol("")
+ }
+ }
+
+ test("power iteration clustering") {
+ val n = n1 + n2
+
+ val model = new PowerIterationClustering()
+ .setK(2)
+ .setMaxIter(40)
+ val result = model.transform(data)
+
+ val predictions = Array.fill(2)(mutable.Set.empty[Long])
+ result.select("id", "prediction").collect().foreach {
+ case Row(id: Long, cluster: Integer) => predictions(cluster) += id
+ }
+ assert(predictions.toSet == Set((1 until n1).toSet, (n1 until n).toSet))
+
+ val result2 = new PowerIterationClustering()
+ .setK(2)
+ .setMaxIter(10)
+ .setInitMode("degree")
+ .transform(data)
+ val predictions2 = Array.fill(2)(mutable.Set.empty[Long])
+ result2.select("id", "prediction").collect().foreach {
+ case Row(id: Long, cluster: Integer) => predictions2(cluster) += id
+ }
+ assert(predictions2.toSet == Set((1 until n1).toSet, (n1 until n).toSet))
+ }
+
+ test("supported input types") {
+ val model = new PowerIterationClustering()
+ .setK(2)
+ .setMaxIter(1)
+
+ def runTest(idType: DataType, neighborType: DataType, similarityType: DataType): Unit = {
+ val typedData = data.select(
+ col("id").cast(idType).alias("id"),
+ col("neighbors").cast(ArrayType(neighborType, containsNull = false)).alias("neighbors"),
+ col("similarities").cast(ArrayType(similarityType, containsNull = false))
+ .alias("similarities")
+ )
+ model.transform(typedData).collect()
+ }
+
+ for (idType <- Seq(IntegerType, LongType)) {
+ runTest(idType, LongType, DoubleType)
+ }
+ for (neighborType <- Seq(IntegerType, LongType)) {
+ runTest(LongType, neighborType, DoubleType)
+ }
+ for (similarityType <- Seq(FloatType, DoubleType)) {
+ runTest(LongType, LongType, similarityType)
+ }
+ }
+
+ test("invalid input: wrong types") {
+ val model = new PowerIterationClustering()
+ .setK(2)
+ .setMaxIter(1)
+ intercept[IllegalArgumentException] {
+ val typedData = data.select(
+ col("id").cast(DoubleType).alias("id"),
+ col("neighbors"),
+ col("similarities")
+ )
+ model.transform(typedData)
+ }
+ intercept[IllegalArgumentException] {
+ val typedData = data.select(
+ col("id"),
+ col("neighbors").cast(ArrayType(DoubleType, containsNull = false)).alias("neighbors"),
+ col("similarities")
+ )
+ model.transform(typedData)
+ }
+ intercept[IllegalArgumentException] {
+ val typedData = data.select(
+ col("id"),
+ col("neighbors"),
+ col("neighbors").alias("similarities")
+ )
+ model.transform(typedData)
+ }
+ }
+
+ test("invalid input: negative similarity") {
+ val model = new PowerIterationClustering()
+ .setMaxIter(1)
+ val badData = spark.createDataFrame(Seq(
+ (0, Array(1), Array(-1.0)),
+ (1, Array(0), Array(-1.0))
+ )).toDF("id", "neighbors", "similarities")
+ val msg = intercept[SparkException] {
+ model.transform(badData)
+ }.getCause.getMessage
+ assert(msg.contains("Similarity must be nonnegative"))
+ }
+
+ test("invalid input: mismatched lengths for neighbor and similarity arrays") {
+ val model = new PowerIterationClustering()
+ .setMaxIter(1)
+ val badData = spark.createDataFrame(Seq(
+ (0, Array(1), Array(0.5)),
+ (1, Array(0, 2), Array(0.5)),
+ (2, Array(1), Array(0.5))
+ )).toDF("id", "neighbors", "similarities")
+ val msg = intercept[SparkException] {
+ model.transform(badData)
+ }.getCause.getMessage
+ assert(msg.contains("The length of the neighbor ID list must be equal to the the length of " +
+ "the neighbor similarity list."))
+ assert(msg.contains(s"Row for ID ${model.getIdCol}=1"))
+ }
+
+ test("read/write") {
+ val t = new PowerIterationClustering()
+ .setK(4)
+ .setMaxIter(100)
+ .setInitMode("degree")
+ .setIdCol("test_id")
+ .setNeighborsCol("myNeighborsCol")
+ .setSimilaritiesCol("mySimilaritiesCol")
+ .setPredictionCol("test_prediction")
+ testDefaultReadWrite(t)
+ }
+}
+
+object PowerIterationClusteringSuite {
+
+ /** Generates a circle of points. */
+ private def genCircle(r: Double, n: Int): Array[(Double, Double)] = {
+ Array.tabulate(n) { i =>
+ val theta = 2.0 * math.Pi * i / n
+ (r * math.cos(theta), r * math.sin(theta))
+ }
+ }
+
+ /** Computes Gaussian similarity. */
+ private def sim(x: (Double, Double), y: (Double, Double)): Double = {
+ val dist2 = (x._1 - y._1) * (x._1 - y._1) + (x._2 - y._2) * (x._2 - y._2)
+ math.exp(-dist2 / 2.0)
+ }
+
+ def generatePICData(
+ spark: SparkSession,
+ r1: Double,
+ r2: Double,
+ n1: Int,
+ n2: Int): DataFrame = {
+ // Generate two circles following the example in the PIC paper.
+ val n = n1 + n2
+ val points = genCircle(r1, n1) ++ genCircle(r2, n2)
+
+ val rows = for (i <- 1 until n) yield {
+ val neighbors = for (j <- 0 until i) yield {
+ j.toLong
+ }
+ val similarities = for (j <- 0 until i) yield {
+ sim(points(i), points(j))
+ }
+ (i.toLong, neighbors.toArray, similarities.toArray)
+ }
+
+ spark.createDataFrame(rows).toDF("id", "neighbors", "similarities")
+ }
+
+}