Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -197,3 +197,31 @@ class ChiSqSelector @Since("1.3.0") (
new ChiSqSelectorModel(indices)
}
}
/**
* Creates a ChiSquared feature selector by Percentile.
* @param percentile percentage of features that selector will select
* (ordered by statistic value descending)
* Note that if the percentile is larger than 100,
* then this will select all features.
*/
@Since("2.0.0")
class PercentileChiSqSelector @Since("2.0.0") (
@Since("2.0.0") val percentile: Int) extends Serializable {

/**
* Returns a ChiSquared feature selector.
*
* @param data an `RDD[LabeledPoint]` containing the labeled dataset with categorical features.
* Real-valued features will be treated as categorical for each distinct value.
* Apply feature discretizer before using this function.
*/
@Since("2.0.0")
def fit(data: RDD[LabeledPoint]): ChiSqSelectorModel = {
val indices = Statistics.chiSqTest(data)
.zipWithIndex.sortBy { case (res, _) => -res.statistic }
.take((data.count() * percentile / 100).toInt)
.map { case (_, indices) => indices }
.sorted
new ChiSqSelectorModel(indices)
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,24 @@ class ChiSqSelectorSuite extends SparkFunSuite with MLlibTestSparkContext {
assert(filteredData == preFilteredData)
}

test("PercentileChiSqSelector transform test (sparse & dense vector)") {
val labeledDiscreteData = sc.parallelize(
Seq(LabeledPoint(0.0, Vectors.sparse(3, Array((0, 8.0), (1, 7.0)))),
LabeledPoint(1.0, Vectors.sparse(3, Array((1, 9.0), (2, 6.0)))),
LabeledPoint(1.0, Vectors.dense(Array(0.0, 9.0, 8.0))),
LabeledPoint(2.0, Vectors.dense(Array(8.0, 9.0, 5.0)))), 2)
val preFilteredData =
Set(LabeledPoint(0.0, Vectors.dense(Array(0.0))),
LabeledPoint(1.0, Vectors.dense(Array(6.0))),
LabeledPoint(1.0, Vectors.dense(Array(8.0))),
LabeledPoint(2.0, Vectors.dense(Array(5.0))))
val model = new PercentileChiSqSelector(25).fit(labeledDiscreteData)
val filteredData = labeledDiscreteData.map { lp =>
LabeledPoint(lp.label, model.transform(lp.features))
}.collect().toSet
assert(filteredData == preFilteredData)
}

test("model load / save") {
val model = ChiSqSelectorSuite.createModel()
val tempDir = Utils.createTempDir()
Expand Down