diff --git a/R/pkg/R/generics.R b/R/pkg/R/generics.R index 0e4350f861e4..27dfd67ffc93 100644 --- a/R/pkg/R/generics.R +++ b/R/pkg/R/generics.R @@ -1247,7 +1247,6 @@ setGeneric("spark.glm", function(data, formula, ...) { standardGeneric("spark.gl #' @export setGeneric("glm") -#' predict #' @rdname predict #' @export setGeneric("predict", function(object, ...) { standardGeneric("predict") }) @@ -1272,7 +1271,6 @@ setGeneric("spark.naiveBayes", function(data, formula, ...) { standardGeneric("s #' @export setGeneric("spark.survreg", function(data, formula, ...) { standardGeneric("spark.survreg") }) -#' write.ml #' @rdname write.ml #' @export setGeneric("write.ml", function(object, path, ...) { standardGeneric("write.ml") }) diff --git a/R/pkg/R/mllib.R b/R/pkg/R/mllib.R index 4fe73671f80d..e99dda8c1254 100644 --- a/R/pkg/R/mllib.R +++ b/R/pkg/R/mllib.R @@ -53,6 +53,29 @@ setClass("AFTSurvivalRegressionModel", representation(jobj = "jobj")) #' @note KMeansModel since 2.0.0 setClass("KMeansModel", representation(jobj = "jobj")) +#' Saves the MLlib model to the input path +#' +#' Saves the MLlib model to the input path. For more information, see the specific +#' MLlib model below. +#' @rdname write.ml +#' @name write.ml +#' @export +#' @seealso \link{spark.glm}, \link{glm} +#' @seealso \link{spark.kmeans}, \link{spark.naiveBayes}, \link{spark.survreg} +#' @seealso \link{read.ml} +NULL + +#' Makes predictions from a MLlib model +#' +#' Makes predictions from a MLlib model. For more information, see the specific +#' MLlib model below. +#' @rdname predict +#' @name predict +#' @export +#' @seealso \link{spark.glm}, \link{glm} +#' @seealso \link{spark.kmeans}, \link{spark.naiveBayes}, \link{spark.survreg} +NULL + #' Generalized Linear Models #' #' Fits generalized linear model against a Spark DataFrame. Users can print, make predictions on the @@ -145,7 +168,7 @@ setMethod("glm", signature(formula = "formula", family = "ANY", data = "SparkDat }) # Returns the summary of a model produced by glm() or spark.glm(), similarly to R's summary(). -#' + #' @param object A fitted generalized linear model #' @return \code{summary} returns a summary object of the fitted model, a list of components #' including at least the coefficients, null/residual deviance, null/residual degrees @@ -185,7 +208,7 @@ setMethod("summary", signature(object = "GeneralizedLinearRegressionModel"), }) # Prints the summary of GeneralizedLinearRegressionModel -#' + #' @rdname spark.glm #' @param x Summary object of fitted generalized linear model returned by \code{summary} function #' @export @@ -343,7 +366,7 @@ setMethod("fitted", signature(object = "KMeansModel"), }) # Get the summary of a k-means model -#' + #' @param object A fitted k-means model #' @return \code{summary} returns the model's coefficients, size and cluster #' @rdname spark.kmeans @@ -370,7 +393,7 @@ setMethod("summary", signature(object = "KMeansModel"), }) # Predicted values based on a k-means model -#' + #' @return \code{predict} returns the predicted values based on a k-means model #' @rdname spark.kmeans #' @export @@ -463,7 +486,7 @@ setMethod("write.ml", signature(object = "AFTSurvivalRegressionModel", path = "c }) # Saves the generalized linear model to the input path. -#' + #' @param path The directory where the model is saved #' @param overwrite Overwrites or not if the output path already exists. Default is FALSE #' which means throw exception if the output path exists. @@ -481,7 +504,7 @@ setMethod("write.ml", signature(object = "GeneralizedLinearRegressionModel", pat }) # Save fitted MLlib model to the input path -#' + #' @param path The directory where the model is saved #' @param overwrite Overwrites or not if the output path already exists. Default is FALSE #' which means throw exception if the output path exists. @@ -506,6 +529,7 @@ setMethod("write.ml", signature(object = "KMeansModel", path = "character"), #' @rdname read.ml #' @name read.ml #' @export +#' @seealso \link{write.ml} #' @examples #' \dontrun{ #' path <- "path/to/model"