|
16 | 16 | # |
17 | 17 |
|
18 | 18 | import itertools |
| 19 | +import numpy as np |
19 | 20 |
|
20 | | -__all__ = ['ParamGridBuilder'] |
| 21 | +from pyspark.ml.param import Params, Param |
| 22 | +from pyspark.ml import Estimator, Model |
| 23 | +from pyspark.sql.functions import rand |
| 24 | + |
| 25 | +__all__ = ['ParamGridBuilder', 'CrossValidator'] |
21 | 26 |
|
22 | 27 |
|
23 | 28 | class ParamGridBuilder(object): |
@@ -78,7 +83,163 @@ def build(self): |
78 | 83 | grid_values = self._param_grid.values() |
79 | 84 | return [dict(zip(keys, prod)) for prod in itertools.product(*grid_values)] |
80 | 85 |
|
| 86 | +class CrossValidator(Estimator): |
| 87 | + """ |
| 88 | + K-fold cross validation. |
| 89 | +
|
| 90 | + >>> from pyspark.ml.classification import LogisticRegression |
| 91 | + >>> from pyspark.ml.evaluation import BinaryClassificationEvaluator |
| 92 | + >>> from pyspark.mllib.linalg import Vectors |
| 93 | + >>> dataset = sqlContext.createDataFrame( |
| 94 | + ... [(Vectors.dense([0.0, 1.0]), 0.0), |
| 95 | + ... (Vectors.dense([1.0, 2.0]), 1.0), |
| 96 | + ... (Vectors.dense([0.55, 3.0]), 0.0), |
| 97 | + ... (Vectors.dense([0.45, 4.0]), 1.0), |
| 98 | + ... (Vectors.dense([0.51, 5.0]), 1.0)] * 10, |
| 99 | + ... ["features", "label"]) |
| 100 | + >>> lr = LogisticRegression() |
| 101 | + >>> grid = ParamGridBuilder() \ |
| 102 | + .addGrid(lr.maxIter, [0, 1, 5]) \ |
| 103 | + .build() |
| 104 | + >>> evaluator = BinaryClassificationEvaluator() |
| 105 | + >>> cv = CrossValidator() \ |
| 106 | + .setEstimator(lr) \ |
| 107 | + .setEstimatorParamMaps(grid) \ |
| 108 | + .setEvaluator(evaluator) \ |
| 109 | + .setNumFolds(3) |
| 110 | + >>> cvModel = cv.fit(dataset) |
| 111 | + >>> expected = lr.fit(dataset, {lr.maxIter: 5}).transform(dataset) |
| 112 | + >>> cvModel.transform(dataset).collect() == expected.collect() |
| 113 | + True |
| 114 | + """ |
| 115 | + |
| 116 | + # a placeholder to make it appear in the generated doc |
| 117 | + estimator = Param(Params._dummy(), "estimator", "estimator to be cross-validated") |
| 118 | + |
| 119 | + # a placeholder to make it appear in the generated doc |
| 120 | + estimatorParamMaps = Param(Params._dummy(), "estimatorParamMaps", "estimator param maps") |
| 121 | + |
| 122 | + # a placeholder to make it appear in the generated doc |
| 123 | + evaluator = Param(Params._dummy(), "evaluator", "evaluator for selection") |
| 124 | + |
| 125 | + # a placeholder to make it appear in the generated doc |
| 126 | + numFolds = Param(Params._dummy(), "numFolds", "number of folds for cross validation") |
| 127 | + |
| 128 | + def __init__(self): |
| 129 | + super(CrossValidator, self).__init__() |
| 130 | + #: param for estimator to be cross-validated |
| 131 | + self.estimator = Param(self, "estimator", "estimator to be cross-validated") |
| 132 | + #: param for estimator param maps |
| 133 | + self.estimatorParamMaps = Param(self, "estimatorParamMaps", "estimator param maps") |
| 134 | + #: param for evaluator for selection |
| 135 | + self.evaluator = Param(self, "evaluator", "evaluator for selection") |
| 136 | + #: param for number of folds for cross validation |
| 137 | + self.numFolds = Param(self, "numFolds", "number of folds for cross validation") |
| 138 | + |
| 139 | + def setEstimator(self, value): |
| 140 | + """ |
| 141 | + Sets the value of :py:attr:`estimator`. |
| 142 | + """ |
| 143 | + self.paramMap[self.estimator] = value |
| 144 | + return self |
| 145 | + |
| 146 | + def getEstimator(self): |
| 147 | + """ |
| 148 | + Gets the value of estimator or its default value. |
| 149 | + """ |
| 150 | + return self.getOrDefault(self.estimator) |
| 151 | + |
| 152 | + def setEstimatorParamMaps(self, value): |
| 153 | + """ |
| 154 | + Sets the value of :py:attr:`estimatorParamMaps`. |
| 155 | + """ |
| 156 | + self.paramMap[self.estimatorParamMaps] = value |
| 157 | + return self |
| 158 | + |
| 159 | + def getEstimatorParamMaps(self): |
| 160 | + """ |
| 161 | + Gets the value of estimatorParamMaps or its default value. |
| 162 | + """ |
| 163 | + return self.getOrDefault(self.estimatorParamMaps) |
| 164 | + |
| 165 | + def setEvaluator(self, value): |
| 166 | + """ |
| 167 | + Sets the value of :py:attr:`evaluator`. |
| 168 | + """ |
| 169 | + self.paramMap[self.evaluator] = value |
| 170 | + return self |
| 171 | + |
| 172 | + def getEvaluator(self): |
| 173 | + """ |
| 174 | + Gets the value of evaluator or its default value. |
| 175 | + """ |
| 176 | + return self.getOrDefault(self.evaluator) |
| 177 | + |
| 178 | + def setNumFolds(self, value): |
| 179 | + """ |
| 180 | + Sets the value of :py:attr:`numFolds`. |
| 181 | + """ |
| 182 | + self.paramMap[self.numFolds] = value |
| 183 | + return self |
| 184 | + |
| 185 | + def getNumFolds(self): |
| 186 | + """ |
| 187 | + Gets the value of numFolds or its default value. |
| 188 | + """ |
| 189 | + return self.getOrDefault(self.numFolds) |
| 190 | + |
| 191 | + def fit(self, dataset, params={}): |
| 192 | + paramMap = self.extractParamMap(params) |
| 193 | + est = paramMap[self.estimator] |
| 194 | + epm = paramMap[self.estimatorParamMaps] |
| 195 | + numModels = len(epm) |
| 196 | + eva = paramMap[self.evaluator] |
| 197 | + nFolds = paramMap[self.numFolds] |
| 198 | + h = 1.0 / nFolds |
| 199 | + randCol = self.uid + "_rand" |
| 200 | + df = dataset.select("*", rand(0).alias(randCol)) |
| 201 | + metrics = np.zeros(numModels) |
| 202 | + for i in range(nFolds): |
| 203 | + validateLB = i * h |
| 204 | + validateUB = (i + 1) * h |
| 205 | + condition = (df[randCol] >= validateLB) & (df[randCol] < validateUB) |
| 206 | + validation = df.filter(condition) |
| 207 | + train = df.filter(~condition) |
| 208 | + for j in range(numModels): |
| 209 | + model = est.fit(train, epm[j]) |
| 210 | + metric = eva.evaluate(model.transform(validation, epm[j])) |
| 211 | + metrics[j] += metric |
| 212 | + bestIndex = np.argmax(metrics) |
| 213 | + bestModel = est.fit(dataset, epm[bestIndex]) |
| 214 | + return CrossValidatorModel(bestModel) |
| 215 | + |
| 216 | + |
| 217 | +class CrossValidatorModel(Model): |
| 218 | + """ |
| 219 | + Model from k-fold corss validation. |
| 220 | + """ |
| 221 | + |
| 222 | + def __init__(self, bestModel): |
| 223 | + #: best model from cross validation |
| 224 | + self.bestModel = bestModel |
| 225 | + |
| 226 | + def transform(self, dataset, params={}): |
| 227 | + return self.bestModel.transform(dataset, params) |
| 228 | + |
81 | 229 |
|
82 | 230 | if __name__ == "__main__": |
83 | 231 | import doctest |
84 | | - doctest.testmod() |
| 232 | + from pyspark.context import SparkContext |
| 233 | + from pyspark.sql import SQLContext |
| 234 | + globs = globals().copy() |
| 235 | + # The small batch size here ensures that we see multiple batches, |
| 236 | + # even in these small test examples: |
| 237 | + sc = SparkContext("local[2]", "ml.tuning tests") |
| 238 | + sqlContext = SQLContext(sc) |
| 239 | + globs['sc'] = sc |
| 240 | + globs['sqlContext'] = sqlContext |
| 241 | + (failure_count, test_count) = doctest.testmod( |
| 242 | + globs=globs, optionflags=doctest.ELLIPSIS) |
| 243 | + sc.stop() |
| 244 | + if failure_count: |
| 245 | + exit(-1) |
0 commit comments