Skip to content

Commit b6ac0fc

Browse files
committed
fix comments
1 parent 8169040 commit b6ac0fc

File tree

1 file changed

+13
-11
lines changed

1 file changed

+13
-11
lines changed

docs/ml-features.md

Lines changed: 13 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -1109,21 +1109,20 @@ scaledData = scalerModel.transform(dataFrame)
11091109
`MinMaxScaler` computes summary statistics on a data set and produces a `MinMaxScalerModel`. The model can then transform each feature individually such that it is in the given range.
11101110

11111111
The rescaled value for a feature E is calculated as,
1112-
1112+
`\begin{equation}
11131113
Rescaled(e_i) = \frac{e_i - E_{min}}{E_{max} - E_{min}} * (max - min) + min
1114-
1115-
For the case E_{max} == E_{min}, Rescaled(e_i) = 0.5 * (max + min)
1114+
\end{equation}`
1115+
For the case `E_{max} == E_{min}`, `Rescaled(e_i) = 0.5 * (max + min)`
11161116

11171117
Note that since zero values will probably be transformed to non-zero values, output of the transformer will be DenseVector even for sparse input.
11181118

1119-
More details can be found in the API docs for
1120-
[MinMaxScaler](api/scala/index.html#org.apache.spark.ml.feature.MinMaxScaler) and
1121-
[MinMaxScalerModel](api/scala/index.html#org.apache.spark.ml.feature.MinMaxScalerModel).
1122-
11231119
The following example demonstrates how to load a dataset in libsvm format and then rescale each feature to [0, 1].
11241120

11251121
<div class="codetabs">
11261122
<div data-lang="scala">
1123+
More details can be found in the API docs for
1124+
[MinMaxScaler](api/scala/index.html#org.apache.spark.ml.feature.MinMaxScaler) and
1125+
[MinMaxScalerModel](api/scala/index.html#org.apache.spark.ml.feature.MinMaxScalerModel).
11271126
{% highlight scala %}
11281127
import org.apache.spark.ml.feature.MinMaxScaler
11291128
import org.apache.spark.mllib.util.MLUtils
@@ -1134,15 +1133,18 @@ val scaler = new MinMaxScaler()
11341133
.setInputCol("features")
11351134
.setOutputCol("scaledFeatures")
11361135

1137-
// Compute summary statistics by fitting the StandardScaler
1136+
// Compute summary statistics and generate MinMaxScalerModel
11381137
val scalerModel = scaler.fit(dataFrame)
11391138

1140-
// Normalize each feature to have unit standard deviation.
1139+
// rescale each feature to range [min, max].
11411140
val scaledData = scalerModel.transform(dataFrame)
11421141
{% endhighlight %}
11431142
</div>
11441143

11451144
<div data-lang="java">
1145+
More details can be found in the API docs for
1146+
[MinMaxScaler](api/java/index.html#org.apache.spark.ml.feature.MinMaxScaler) and
1147+
[MinMaxScalerModel](api/java/index.html#org.apache.spark.ml.feature.MinMaxScalerModel).
11461148
{% highlight java %}
11471149
import org.apache.spark.api.java.JavaRDD;
11481150
import org.apache.spark.ml.feature.MinMaxScaler;
@@ -1158,10 +1160,10 @@ MinMaxScaler scaler = new MinMaxScaler()
11581160
.setInputCol("features")
11591161
.setOutputCol("scaledFeatures");
11601162

1161-
// Compute summary statistics by fitting the StandardScaler
1163+
// Compute summary statistics and generate MinMaxScalerModel
11621164
MinMaxScalerModel scalerModel = scaler.fit(dataFrame);
11631165

1164-
// Normalize each feature to have unit standard deviation.
1166+
// rescale each feature to range [min, max].
11651167
DataFrame scaledData = scalerModel.transform(dataFrame);
11661168
{% endhighlight %}
11671169
</div>

0 commit comments

Comments
 (0)