@@ -1686,8 +1686,8 @@ def _check_dataframe_localize_timestamps(pdf, timezone):
16861686 :param timezone: the timezone to convert. if None then use local timezone
16871687 :return pandas.DataFrame where any timezone aware columns have been converted to tz-naive
16881688 """
1689- from pyspark .sql .utils import _require_minimum_pandas_version
1690- _require_minimum_pandas_version ()
1689+ from pyspark .sql .utils import require_minimum_pandas_version
1690+ require_minimum_pandas_version ()
16911691
16921692 from pandas .api .types import is_datetime64tz_dtype
16931693 tz = timezone or 'tzlocal()'
@@ -1707,8 +1707,8 @@ def _check_series_convert_timestamps_internal(s, timezone):
17071707 :param timezone: the timezone to convert. if None then use local timezone
17081708 :return pandas.Series where if it is a timestamp, has been UTC normalized without a time zone
17091709 """
1710- from pyspark .sql .utils import _require_minimum_pandas_version
1711- _require_minimum_pandas_version ()
1710+ from pyspark .sql .utils import require_minimum_pandas_version
1711+ require_minimum_pandas_version ()
17121712
17131713 from pandas .api .types import is_datetime64_dtype , is_datetime64tz_dtype
17141714 # TODO: handle nested timestamps, such as ArrayType(TimestampType())?
@@ -1730,8 +1730,8 @@ def _check_series_convert_timestamps_localize(s, from_timezone, to_timezone):
17301730 :param to_timezone: the timezone to convert to. if None then use local timezone
17311731 :return pandas.Series where if it is a timestamp, has been converted to tz-naive
17321732 """
1733- from pyspark .sql .utils import _require_minimum_pandas_version
1734- _require_minimum_pandas_version ()
1733+ from pyspark .sql .utils import require_minimum_pandas_version
1734+ require_minimum_pandas_version ()
17351735
17361736 import pandas as pd
17371737 from pandas .api .types import is_datetime64tz_dtype , is_datetime64_dtype
0 commit comments