@@ -245,7 +245,8 @@ def _inferSchema(self, rdd, samplingRatio=None):
245245
246246 @since (1.3 )
247247 @ignore_unicode_prefix
248- def createDataFrame (self , data , schema = None , samplingRatio = None , verifySchema = True , numSlices = None ):
248+ def createDataFrame (self , data , schema = None , samplingRatio = None , verifySchema = True ,
249+ numSlices = None ):
249250 """
250251 Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`.
251252
@@ -276,7 +277,7 @@ def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=Tr
276277 We can also use ``int`` as a short name for :class:`pyspark.sql.types.IntegerType`.
277278 :param samplingRatio: the sample ratio of rows used for inferring
278279 :param verifySchema: verify data types of every row against schema.
279- :param numSlices: specify as :class:`int` the number of slices (partitions) to distribute
280+ :param numSlices: specify as :class:`int` the number of slices (partitions) to distribute
280281 ``data`` across. Applies to ``data`` of :class:`list` or :class:`pandas.DataFrame`.
281282 Defaults to `self.sparkContext.defaultParallelism`.
282283 :return: :class:`DataFrame`
@@ -337,7 +338,8 @@ def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=Tr
337338 ...
338339 Py4JJavaError: ...
339340 """
340- return self .sparkSession .createDataFrame (data , schema , samplingRatio , verifySchema , numSlices )
341+ return self .sparkSession .createDataFrame (data , schema , samplingRatio , verifySchema ,
342+ numSlices )
341343
342344 @since (1.3 )
343345 def registerDataFrameAsTable (self , df , tableName ):
0 commit comments