@@ -64,7 +64,8 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
6464 val arr = DecisionTreeSuite .generateCategoricalDataPoints()
6565 assert(arr.length == 1000 )
6666 val rdd = sc.parallelize(arr)
67- val strategy = new Strategy (Classification ,Gini ,3 ,100 ,categoricalFeaturesInfo = Map (0 -> 2 , 1 -> 2 ))
67+ val strategy = new Strategy (Classification ,Gini ,3 ,100 ,categoricalFeaturesInfo = Map (0 -> 2 ,
68+ 1 -> 2 ))
6869 val (splits, bins) = DecisionTree .findSplitsBins(rdd,strategy)
6970 assert(splits.length== 2 )
7071 assert(bins.length== 2 )
@@ -120,7 +121,7 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
120121 assert(bins(0 )(1 ).highSplit.categories.contains(1.0 ))
121122 assert(bins(0 )(1 ).highSplit.categories.contains(0.0 ))
122123
123- assert(bins(0 )(2 ).category == Double . MaxValue )
124+ assert(bins(0 )(2 ) == null )
124125
125126 assert(bins(1 )(0 ).category == 0.0 )
126127 assert(bins(1 )(0 ).lowSplit.categories.length == 0 )
@@ -134,15 +135,16 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
134135 assert(bins(1 )(1 ).highSplit.categories.contains(0.0 ))
135136 assert(bins(1 )(1 ).highSplit.categories.contains(1.0 ))
136137
137- assert(bins(1 )(2 ).category == Double . MaxValue )
138+ assert(bins(1 )(2 ) == null )
138139
139140 }
140141
141142 test(" split and bin calculations for categorical variables with no sample for one category" ){
142143 val arr = DecisionTreeSuite .generateCategoricalDataPoints()
143144 assert(arr.length == 1000 )
144145 val rdd = sc.parallelize(arr)
145- val strategy = new Strategy (Classification ,Gini ,3 ,100 ,categoricalFeaturesInfo = Map (0 -> 3 , 1 -> 3 ))
146+ val strategy = new Strategy (Classification ,Gini ,3 ,100 ,categoricalFeaturesInfo = Map (0 -> 3 ,
147+ 1 -> 3 ))
146148 val (splits, bins) = DecisionTree .findSplitsBins(rdd,strategy)
147149
148150 // Checking splits
@@ -217,7 +219,7 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
217219 assert(bins(0 )(2 ).highSplit.categories.contains(0.0 ))
218220 assert(bins(0 )(2 ).highSplit.categories.contains(2.0 ))
219221
220- assert(bins(0 )(3 ).category == Double . MaxValue )
222+ assert(bins(0 )(3 ) == null )
221223
222224 assert(bins(1 )(0 ).category == 0.0 )
223225 assert(bins(1 )(0 ).lowSplit.categories.length == 0 )
@@ -240,7 +242,7 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
240242 assert(bins(1 )(2 ).highSplit.categories.contains(1.0 ))
241243 assert(bins(1 )(2 ).highSplit.categories.contains(2.0 ))
242244
243- assert(bins(1 )(3 ).category == Double . MaxValue )
245+ assert(bins(1 )(3 ) == null )
244246
245247
246248 }
@@ -249,10 +251,12 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
249251 val arr = DecisionTreeSuite .generateCategoricalDataPoints()
250252 assert(arr.length == 1000 )
251253 val rdd = sc.parallelize(arr)
252- val strategy = new Strategy (Classification ,Gini ,3 ,100 ,categoricalFeaturesInfo = Map (0 -> 3 , 1 -> 3 ))
254+ val strategy = new Strategy (Classification ,Gini ,3 ,100 ,categoricalFeaturesInfo = Map (0 -> 3 ,
255+ 1 -> 3 ))
253256 val (splits, bins) = DecisionTree .findSplitsBins(rdd,strategy)
254257 strategy.numBins = 100
255- val bestSplits = DecisionTree .findBestSplits(rdd,new Array (7 ),strategy,0 ,Array [List [Filter ]](),splits,bins)
258+ val bestSplits = DecisionTree .findBestSplits(rdd, new Array (7 ), strategy, 0 ,
259+ Array [List [Filter ]](), splits, bins)
256260
257261 val split = bestSplits(0 )._1
258262 assert(split.categories.length == 1 )
@@ -272,10 +276,12 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
272276 val arr = DecisionTreeSuite .generateCategoricalDataPoints()
273277 assert(arr.length == 1000 )
274278 val rdd = sc.parallelize(arr)
275- val strategy = new Strategy (Regression ,Variance ,3 ,100 ,categoricalFeaturesInfo = Map (0 -> 3 , 1 -> 3 ))
279+ val strategy = new Strategy (Regression ,Variance ,3 ,100 ,categoricalFeaturesInfo = Map (0 -> 3 ,
280+ 1 -> 3 ))
276281 val (splits, bins) = DecisionTree .findSplitsBins(rdd,strategy)
277282 strategy.numBins = 100
278- val bestSplits = DecisionTree .findBestSplits(rdd,new Array (7 ),strategy,0 ,Array [List [Filter ]](),splits,bins)
283+ val bestSplits = DecisionTree .findBestSplits(rdd, new Array (7 ), strategy, 0 ,
284+ Array [List [Filter ]](), splits, bins)
279285
280286 val split = bestSplits(0 )._1
281287 assert(split.categories.length == 1 )
@@ -305,7 +311,8 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
305311 assert(bins(0 ).length== 100 )
306312
307313 strategy.numBins = 100
308- val bestSplits = DecisionTree .findBestSplits(rdd,new Array (7 ),strategy,0 ,Array [List [Filter ]](),splits,bins)
314+ val bestSplits = DecisionTree .findBestSplits(rdd, new Array (7 ), strategy, 0 ,
315+ Array [List [Filter ]](), splits, bins)
309316 assert(bestSplits.length == 1 )
310317 assert(0 == bestSplits(0 )._1.feature)
311318 assert(10 == bestSplits(0 )._1.threshold)
@@ -329,7 +336,8 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
329336 assert(bins(0 ).length== 100 )
330337
331338 strategy.numBins = 100
332- val bestSplits = DecisionTree .findBestSplits(rdd,Array (0.0 ),strategy,0 ,Array [List [Filter ]](),splits,bins)
339+ val bestSplits = DecisionTree .findBestSplits(rdd, Array (0.0 ), strategy, 0 ,
340+ Array [List [Filter ]](), splits, bins)
333341 assert(bestSplits.length == 1 )
334342 assert(0 == bestSplits(0 )._1.feature)
335343 assert(10 == bestSplits(0 )._1.threshold)
@@ -355,7 +363,8 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
355363 assert(bins(0 ).length== 100 )
356364
357365 strategy.numBins = 100
358- val bestSplits = DecisionTree .findBestSplits(rdd,Array (0.0 ),strategy,0 ,Array [List [Filter ]](),splits,bins)
366+ val bestSplits = DecisionTree .findBestSplits(rdd, Array (0.0 ), strategy, 0 ,
367+ Array [List [Filter ]](), splits, bins)
359368 assert(bestSplits.length == 1 )
360369 assert(0 == bestSplits(0 )._1.feature)
361370 assert(10 == bestSplits(0 )._1.threshold)
@@ -379,7 +388,8 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
379388 assert(bins(0 ).length== 100 )
380389
381390 strategy.numBins = 100
382- val bestSplits = DecisionTree .findBestSplits(rdd,Array (0.0 ),strategy,0 ,Array [List [Filter ]](),splits,bins)
391+ val bestSplits = DecisionTree .findBestSplits(rdd, Array (0.0 ), strategy, 0 ,
392+ Array [List [Filter ]](), splits, bins)
383393 assert(bestSplits.length == 1 )
384394 assert(0 == bestSplits(0 )._1.feature)
385395 assert(10 == bestSplits(0 )._1.threshold)
0 commit comments