Skip to content

Commit 0b5c182

Browse files
committed
fix links in ml-guide
1 parent 469a6e5 commit 0b5c182

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

docs/ml-guide.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ E.g., a learning algorithm is an `Estimator` which trains on a dataset and produ
3131

3232
* **[`Pipeline`](ml-guide.html#pipeline)**: A `Pipeline` chains multiple `Transformer`s and `Estimator`s together to specify an ML workflow.
3333

34-
* **[`Param`](ml-guide.html#param)**: All `Transformer`s and `Estimator`s now share a common API for specifying parameters.
34+
* **[`Param`](ml-guide.html#parameters)**: All `Transformer`s and `Estimator`s now share a common API for specifying parameters.
3535

3636
## ML Dataset
3737

@@ -134,7 +134,7 @@ Each stage's `transform()` method updates the dataset and passes it to the next
134134
Spark ML `Estimator`s and `Transformer`s use a uniform API for specifying parameters.
135135

136136
A [`Param`](api/scala/index.html#org.apache.spark.ml.param.Param) is a named parameter with self-contained documentation.
137-
A [`ParamMap`](api/scala/index.html#org.apache.spark.ml.param.ParamMap)] is a set of (parameter, value) pairs.
137+
A [`ParamMap`](api/scala/index.html#org.apache.spark.ml.param.ParamMap) is a set of (parameter, value) pairs.
138138

139139
There are two main ways to pass parameters to an algorithm:
140140

@@ -148,7 +148,7 @@ This is useful if there are two algorithms with the `maxIter` parameter in a `Pi
148148
# Code Examples
149149

150150
This section gives code examples illustrating the functionality discussed above.
151-
There is not yet documentation for specific algorithms in Spark ML. For more info, please refer to the [API Documentation](api/scala/index.html). Spark ML algorithms are currently wrappers for MLlib algorithms, and the [MLlib programming guide](mllib-guide.html) has details on specific algorithms.
151+
There is not yet documentation for specific algorithms in Spark ML. For more info, please refer to the [API Documentation](api/scala/index.html#org.apache.spark.ml.package). Spark ML algorithms are currently wrappers for MLlib algorithms, and the [MLlib programming guide](mllib-guide.html) has details on specific algorithms.
152152

153153
## Example: Estimator, Transformer, and Param
154154

@@ -492,7 +492,7 @@ The `ParamMap` which produces the best evaluation metric (averaged over the `$k$
492492
`CrossValidator` finally fits the `Estimator` using the best `ParamMap` and the entire dataset.
493493

494494
The following example demonstrates using `CrossValidator` to select from a grid of parameters.
495-
To help construct the parameter grid, we use the [`ParamGridBuilder`](api/scala/index.html#org.apache.spark.ml.tuning.ParamGridGuilder) utility.
495+
To help construct the parameter grid, we use the [`ParamGridBuilder`](api/scala/index.html#org.apache.spark.ml.tuning.ParamGridBuilder) utility.
496496

497497
Note that cross-validation over a grid of parameters is expensive.
498498
E.g., in the example below, the parameter grid has 3 values for `hashingTF.numFeatures` and 2 values for `lr.regParam`, and `CrossValidator` uses 2 folds. This multiplies out to `$(3 \times 2) \times 2 = 12$` different models being trained.

0 commit comments

Comments
 (0)