diff --git a/benchmark/opperf/README.md b/benchmark/opperf/README.md index e6a367d38f28..7e708d3cbe1d 100644 --- a/benchmark/opperf/README.md +++ b/benchmark/opperf/README.md @@ -75,7 +75,7 @@ For example, you want to run benchmarks for all NDArray Broadcast Binary Operato ``` #!/usr/bin/python -from benchmark.opperf.tensor_operations.binary_broadcast_operators import run_mx_binary_broadcast_operators_benchmarks +from benchmark.opperf.nd_operations.binary_broadcast_operators import run_mx_binary_broadcast_operators_benchmarks # Run all Binary Broadcast operations benchmarks with default input values print(run_mx_binary_broadcast_operators_benchmarks()) diff --git a/benchmark/opperf/rules/default_params.py b/benchmark/opperf/rules/default_params.py index 2c8f3d436e0d..d17d7f1d2bd0 100644 --- a/benchmark/opperf/rules/default_params.py +++ b/benchmark/opperf/rules/default_params.py @@ -34,6 +34,7 @@ # For operators like - random_uniform, random_normal etc.. DEFAULT_SHAPE = [(1024, 1024), (10000, 1), (10000, 100)] +DEFAULT_SAMPLE = [(2,)] DEFAULT_LOW = [0] DEFAULT_HIGH = [5] DEFAULT_K = [1] @@ -64,6 +65,7 @@ # Default Inputs. MXNet Op Param Name to Default Input mapping DEFAULTS_INPUTS = {"data": DEFAULT_DATA, + "sample": DEFAULT_SAMPLE, "lhs": DEFAULT_LHS, "rhs": DEFAULT_RHS, "shape": DEFAULT_SHAPE, @@ -88,6 +90,6 @@ # given as NDArray and translate users inputs such as a shape tuple, Numpy Array or # a list to MXNet NDArray. This is just a convenience added so benchmark utility users # can just say shape of the tensor, and we automatically create Tensors. -PARAMS_OF_TYPE_NDARRAY = ["lhs", "rhs", "data", "base", "exp", +PARAMS_OF_TYPE_NDARRAY = ["lhs", "rhs", "data", "base", "exp", "sample", "mu", "sigma", "lam", "alpha", "beta", "gamma", "k", "p", "low", "high", "weight", "bias", "moving_mean", "moving_var"]