diff --git a/src/operator/pad.cc b/src/operator/pad.cc index 9a5d7561ac01..b6dc0a7536be 100644 --- a/src/operator/pad.cc +++ b/src/operator/pad.cc @@ -37,23 +37,23 @@ template void single_image_edge(const Tensor dst, const Tensor src, mxnet::TShape pad) { const int nslices = src.size(0); - const int iheight = src.size(1); - const int iwidth = src.size(2); + const index_t iheight = src.size(1); + const index_t iwidth = src.size(2); - const int oheight = dst.size(1); - const int owidth = dst.size(2); + const index_t oheight = dst.size(1); + const index_t owidth = dst.size(2); - const int pad_t = pad[4]; - const int pad_l = pad[6]; - int iStartX = std::max(0, -pad_l); - int iStartY = std::max(0, -pad_t); - int oStartX = std::max(0, pad_l); - int oStartY = std::max(0, pad_t); + const index_t pad_t = pad[4]; + const index_t pad_l = pad[6]; + index_t iStartX = std::max(index_t{0}, -pad_l); + index_t iStartY = std::max(index_t{0}, -pad_t); + index_t oStartX = std::max(index_t{0}, pad_l); + index_t oStartY = std::max(index_t{0}, pad_t); - int k, ip_x, ip_y; + index_t k, ip_x, ip_y; #pragma omp parallel for private(k, ip_x, ip_y) for (k = 0; k < nslices; k++) { - int i, j; + index_t i, j; for (i = 0; i < oheight; i++) { for (j = 0; j < owidth; j++) { if (j < pad_l) { @@ -86,23 +86,23 @@ void single_image_edge_grad(const Tensor &grad_in, const Tensor grad_out, mxnet::TShape pad) { const int nslices = grad_in.size(0); - const int iheight = grad_in.size(1); - const int iwidth = grad_in.size(2); + const index_t iheight = grad_in.size(1); + const index_t iwidth = grad_in.size(2); - const int oheight = grad_out.size(1); - const int owidth = grad_out.size(2); + const index_t oheight = grad_out.size(1); + const index_t owidth = grad_out.size(2); - const int pad_t = pad[4]; - const int pad_l = pad[6]; - int iStartX = std::max(0, -pad_l); - int iStartY = std::max(0, -pad_t); - int oStartX = std::max(0, pad_l); - int oStartY = std::max(0, pad_t); + const index_t pad_t = pad[4]; + const index_t pad_l = pad[6]; + index_t iStartX = std::max(index_t{0}, -pad_l); + index_t iStartY = std::max(index_t{0}, -pad_t); + index_t oStartX = std::max(index_t{0}, pad_l); + index_t oStartY = std::max(index_t{0}, pad_t); - int k, ip_x, ip_y; + index_t k, ip_x, ip_y; #pragma omp parallel for private(k, ip_x, ip_y) for (k = 0; k < nslices; k++) { - int i, j; + index_t i, j; for (i = 0; i < oheight; i++) { for (j = 0; j < owidth; j++) { if (j < pad_l) { @@ -137,15 +137,15 @@ template void single_image_constant(const Tensor &dst, const Tensor src, mxnet::TShape pad, DType constant_value) { - const int pad_t = pad[4]; - const int pad_l = pad[6]; - int c, w, h; + const index_t pad_t = pad[4]; + const index_t pad_l = pad[6]; + index_t c, w, h; // using these vars to avoid casting overhead each loop iteration - const int dst0 = dst.size(0); - const int dst1 = dst.size(1); - const int dst2 = dst.size(2); - const int src1 = src.size(1); - const int src2 = src.size(2); + const index_t dst0 = dst.size(0); + const index_t dst1 = dst.size(1); + const index_t dst2 = dst.size(2); + const index_t src1 = src.size(1); + const index_t src2 = src.size(2); #pragma omp parallel for private(c, w, h) for (c = 0; c < dst0; ++c) { for (h = 0; h < dst1; ++h) { @@ -165,13 +165,13 @@ template void single_image_constant_grad(const Tensor &in_grad, const Tensor out_grad, mxnet::TShape pad) { - const int pad_t = pad[4]; - const int pad_l = pad[6]; + const index_t pad_t = pad[4]; + const index_t pad_l = pad[6]; - const int in_grad0 = in_grad.size(0); - const int in_grad1 = in_grad.size(1); - const int in_grad2 = in_grad.size(2); - int c, h, w; + const index_t in_grad0 = in_grad.size(0); + const index_t in_grad1 = in_grad.size(1); + const index_t in_grad2 = in_grad.size(2); + index_t c, h, w; #pragma omp parallel for private(c, w, h) for (c = 0; c < in_grad0; ++c) { for (h = 0; h < in_grad1; ++h) { @@ -187,24 +187,24 @@ template void single_image_reflect(const Tensor &dst, const Tensor src, mxnet::TShape pad) { const int nslices = src.size(0); - const int iheight = src.size(1); - const int iwidth = src.size(2); + const index_t iheight = src.size(1); + const index_t iwidth = src.size(2); - const int oheight = dst.size(1); - const int owidth = dst.size(2); + const index_t oheight = dst.size(1); + const index_t owidth = dst.size(2); - const int pad_t = pad[4]; - const int pad_l = pad[6]; - int iStartX = std::max(0, -pad_l); - int iStartY = std::max(0, -pad_t); - int oStartX = std::max(0, pad_l); - int oStartY = std::max(0, pad_t); + const index_t pad_t = pad[4]; + const index_t pad_l = pad[6]; + index_t iStartX = std::max(index_t{0}, -pad_l); + index_t iStartY = std::max(index_t{0}, -pad_t); + index_t oStartX = std::max(index_t{0}, pad_l); + index_t oStartY = std::max(index_t{0}, pad_t); - int k, ip_x, ip_y; + index_t k, ip_x, ip_y; #pragma omp parallel for private(k, ip_x, ip_y) for (k = 0; k < nslices; k++) { - int i, j; + index_t i, j; for (i = 0; i < oheight; i++) { for (j = 0; j < owidth; j++) { if (j < pad_l) { @@ -238,24 +238,24 @@ void single_image_reflect_grad(const Tensor &grad_in, const Tensor grad_out, mxnet::TShape pad) { const int nslices = grad_in.size(0); - const int iheight = grad_in.size(1); - const int iwidth = grad_in.size(2); + const index_t iheight = grad_in.size(1); + const index_t iwidth = grad_in.size(2); - const int oheight = grad_out.size(1); - const int owidth = grad_out.size(2); + const index_t oheight = grad_out.size(1); + const index_t owidth = grad_out.size(2); - const int pad_t = pad[4]; - const int pad_l = pad[6]; - int iStartX = std::max(0, -pad_l); - int iStartY = std::max(0, -pad_t); - int oStartX = std::max(0, pad_l); - int oStartY = std::max(0, pad_t); + const index_t pad_t = pad[4]; + const index_t pad_l = pad[6]; + index_t iStartX = std::max(index_t{0}, -pad_l); + index_t iStartY = std::max(index_t{0}, -pad_t); + index_t oStartX = std::max(index_t{0}, pad_l); + index_t oStartY = std::max(index_t{0}, pad_t); - int k, ip_x, ip_y; + index_t k, ip_x, ip_y; #pragma omp parallel for private(k, ip_x, ip_y) for (k = 0; k < nslices; k++) { - int i, j; + index_t i, j; for (i = 0; i < oheight; i++) { for (j = 0; j < owidth; j++) { if (j < pad_l) { @@ -294,28 +294,28 @@ template void single_image_edge(const Tensor dst, const Tensor src, mxnet::TShape pad) { const int nslices = src.size(0); - const int idepth = src.size(1); - const int iheight = src.size(2); - const int iwidth = src.size(3); - - const int odepth = dst.size(1); - const int oheight = dst.size(2); - const int owidth = dst.size(3); - - const int pad_f = pad[4]; - const int pad_t = pad[6]; - const int pad_l = pad[8]; - int iStartX = std::max(0, -pad_l); - int iStartY = std::max(0, -pad_t); - int iStartZ = std::max(0, -pad_f); - int oStartX = std::max(0, pad_l); - int oStartY = std::max(0, pad_t); - int oStartZ = std::max(0, pad_f); - - int k, ip_x, ip_y, ip_z; + const index_t idepth = src.size(1); + const index_t iheight = src.size(2); + const index_t iwidth = src.size(3); + + const index_t odepth = dst.size(1); + const index_t oheight = dst.size(2); + const index_t owidth = dst.size(3); + + const index_t pad_f = pad[4]; + const index_t pad_t = pad[6]; + const index_t pad_l = pad[8]; + index_t iStartX = std::max(index_t{0}, -pad_l); + index_t iStartY = std::max(index_t{0}, -pad_t); + index_t iStartZ = std::max(index_t{0}, -pad_f); + index_t oStartX = std::max(index_t{0}, pad_l); + index_t oStartY = std::max(index_t{0}, pad_t); + index_t oStartZ = std::max(index_t{0}, pad_f); + + index_t k, ip_x, ip_y, ip_z; #pragma omp parallel for private(k, ip_x, ip_y, ip_z) for (k = 0; k < nslices; k++) { - int i, j, z; + index_t i, j, z; for (z = 0; z < odepth; z++) { for (i = 0; i < oheight; i++) { for (j = 0; j < owidth; j++) { @@ -362,28 +362,28 @@ void single_image_edge_grad(const Tensor &grad_in, const Tensor grad_out, mxnet::TShape pad) { const int nslices = grad_in.size(0); - const int idepth = grad_in.size(1); - const int iheight = grad_in.size(2); - const int iwidth = grad_in.size(3); - - const int odepth = grad_out.size(1); - const int oheight = grad_out.size(2); - const int owidth = grad_out.size(3); - - const int pad_f = pad[4]; - const int pad_t = pad[6]; - const int pad_l = pad[8]; - int iStartX = std::max(0, -pad_l); - int iStartY = std::max(0, -pad_t); - int iStartZ = std::max(0, -pad_f); - int oStartX = std::max(0, pad_l); - int oStartY = std::max(0, pad_t); - int oStartZ = std::max(0, pad_f); - - int k, ip_x, ip_y, ip_z; + const index_t idepth = grad_in.size(1); + const index_t iheight = grad_in.size(2); + const index_t iwidth = grad_in.size(3); + + const index_t odepth = grad_out.size(1); + const index_t oheight = grad_out.size(2); + const index_t owidth = grad_out.size(3); + + const index_t pad_f = pad[4]; + const index_t pad_t = pad[6]; + const index_t pad_l = pad[8]; + index_t iStartX = std::max(index_t{0}, -pad_l); + index_t iStartY = std::max(index_t{0}, -pad_t); + index_t iStartZ = std::max(index_t{0}, -pad_f); + index_t oStartX = std::max(index_t{0}, pad_l); + index_t oStartY = std::max(index_t{0}, pad_t); + index_t oStartZ = std::max(index_t{0}, pad_f); + + index_t k, ip_x, ip_y, ip_z; #pragma omp parallel for private(k, ip_x, ip_y, ip_z) for (k = 0; k < nslices; k++) { - int i, j, z; + index_t i, j, z; for (z = 0; z < odepth; z++) { for (i = 0; i < oheight; i++) { for (j = 0; j < owidth; j++) { @@ -430,19 +430,19 @@ template void single_image_constant(const Tensor &dst, const Tensor src, mxnet::TShape pad, DType constant_value) { - const int pad_f = pad[4]; - const int pad_t = pad[6]; - const int pad_l = pad[8]; - - const int dst0 = dst.size(0); - const int dst1 = dst.size(1); - const int dst2 = dst.size(2); - const int dst3 = dst.size(3); - const int src1 = src.size(1); - const int src2 = src.size(2); - const int src3 = src.size(3); - - int c, d, w, h; + const index_t pad_f = pad[4]; + const index_t pad_t = pad[6]; + const index_t pad_l = pad[8]; + + const index_t dst0 = dst.size(0); + const index_t dst1 = dst.size(1); + const index_t dst2 = dst.size(2); + const index_t dst3 = dst.size(3); + const index_t src1 = src.size(1); + const index_t src2 = src.size(2); + const index_t src3 = src.size(3); + + index_t c, d, w, h; #pragma omp parallel for private(c, d, w, h) for (c = 0; c < dst0; ++c) { for (d = 0; d < dst1; ++d) { @@ -465,14 +465,14 @@ template void single_image_constant_grad(const Tensor &in_grad, const Tensor out_grad, mxnet::TShape pad) { - const int pad_f = pad[4]; - const int pad_t = pad[6]; - const int pad_l = pad[8]; - const int in_grad0 = in_grad.size(0); - const int in_grad1 = in_grad.size(1); - const int in_grad2 = in_grad.size(2); - const int in_grad3 = in_grad.size(3); - int c, d, w, h; + const index_t pad_f = pad[4]; + const index_t pad_t = pad[6]; + const index_t pad_l = pad[8]; + const index_t in_grad0 = in_grad.size(0); + const index_t in_grad1 = in_grad.size(1); + const index_t in_grad2 = in_grad.size(2); + const index_t in_grad3 = in_grad.size(3); + index_t c, d, w, h; #pragma omp parallel for private(c, d, w, h) for (c = 0; c < in_grad0; ++c) { for (d = 0; d < in_grad1; ++d) { @@ -490,28 +490,28 @@ template void single_image_reflect(const Tensor &dst, const Tensor src, mxnet::TShape pad) { const int nslices = src.size(0); - const int idepth = src.size(1); - const int iheight = src.size(2); - const int iwidth = src.size(3); - - const int odepth = dst.size(1); - const int oheight = dst.size(2); - const int owidth = dst.size(3); - - const int pad_f = pad[4]; - const int pad_t = pad[6]; - const int pad_l = pad[8]; - int iStartX = std::max(0, -pad_l); - int iStartY = std::max(0, -pad_t); - int iStartZ = std::max(0, -pad_f); - int oStartX = std::max(0, pad_l); - int oStartY = std::max(0, pad_t); - int oStartZ = std::max(0, pad_f); - - int l, ip_x, ip_y, ip_z; + const index_t idepth = src.size(1); + const index_t iheight = src.size(2); + const index_t iwidth = src.size(3); + + const index_t odepth = dst.size(1); + const index_t oheight = dst.size(2); + const index_t owidth = dst.size(3); + + const index_t pad_f = pad[4]; + const index_t pad_t = pad[6]; + const index_t pad_l = pad[8]; + index_t iStartX = std::max(index_t{0}, -pad_l); + index_t iStartY = std::max(index_t{0}, -pad_t); + index_t iStartZ = std::max(index_t{0}, -pad_f); + index_t oStartX = std::max(index_t{0}, pad_l); + index_t oStartY = std::max(index_t{0}, pad_t); + index_t oStartZ = std::max(index_t{0}, pad_f); + + index_t l, ip_x, ip_y, ip_z; #pragma omp parallel for private(l, ip_x, ip_y, ip_z) for (l = 0; l < nslices; l++) { - int i, j, k; + index_t i, j, k; for (k = 0; k < odepth; k++) { for (i = 0; i < oheight; i++) { for (j = 0; j < owidth; j++) { @@ -558,28 +558,28 @@ void single_image_reflect_grad(const Tensor &grad_in, const Tensor grad_out, mxnet::TShape pad) { const int nslices = grad_in.size(0); - const int idepth = grad_in.size(1); - const int iheight = grad_in.size(2); - const int iwidth = grad_in.size(3); - - const int odepth = grad_out.size(1); - const int oheight = grad_out.size(2); - const int owidth = grad_out.size(3); - - const int pad_f = pad[4]; - const int pad_t = pad[6]; - const int pad_l = pad[8]; - int iStartX = std::max(0, -pad_l); - int iStartY = std::max(0, -pad_t); - int iStartZ = std::max(0, -pad_f); - int oStartX = std::max(0, pad_l); - int oStartY = std::max(0, pad_t); - int oStartZ = std::max(0, pad_f); - - int l, ip_x, ip_y, ip_z; + const index_t idepth = grad_in.size(1); + const index_t iheight = grad_in.size(2); + const index_t iwidth = grad_in.size(3); + + const index_t odepth = grad_out.size(1); + const index_t oheight = grad_out.size(2); + const index_t owidth = grad_out.size(3); + + const index_t pad_f = pad[4]; + const index_t pad_t = pad[6]; + const index_t pad_l = pad[8]; + index_t iStartX = std::max(index_t{0}, -pad_l); + index_t iStartY = std::max(index_t{0}, -pad_t); + index_t iStartZ = std::max(index_t{0}, -pad_f); + index_t oStartX = std::max(index_t{0}, pad_l); + index_t oStartY = std::max(index_t{0}, pad_t); + index_t oStartZ = std::max(index_t{0}, pad_f); + + index_t l, ip_x, ip_y, ip_z; /*#pragma omp parallel for private(l, ip_x, ip_y, ip_z)*/ for (l = 0; l < nslices; l++) { - int i, j, k; + index_t i, j, k; for (k = 0; k < odepth; k++) { for (i = 0; i < oheight; i++) { for (j = 0; j < owidth; j++) { diff --git a/tests/nightly/test_large_array.py b/tests/nightly/test_large_array.py index 14befb272486..63dc2b71b9d4 100644 --- a/tests/nightly/test_large_array.py +++ b/tests/nightly/test_large_array.py @@ -1493,6 +1493,16 @@ def test_minimum(): assert z[-1][-1] == 3 +def test_pad(): + x = create_2d_tensor(rows=SMALL_Y-2, columns=LARGE_X//2-2, dtype=np.float32).reshape(1 , 1, SMALL_Y-2, LARGE_X//2-2) + y = nd.pad(x, mode="edge", pad_width=(0, 0, 0, 0, 1, 1, 1, 1)) + assert y[0][0][1][0] == 0 + assert y[0][0][1][-1] == 0 + assert y[0][0][-1][0] == SMALL_Y-3 + assert y[0][0][-1][-1] == SMALL_Y-3 + assert y.shape == (1, 1, SMALL_Y, LARGE_X//2) + + if __name__ == '__main__': import nose nose.runmodule()