From 3bc1b9aa5a8ecb007bc0773869fb02313c7aa965 Mon Sep 17 00:00:00 2001 From: tdelteil Date: Wed, 24 Oct 2018 21:49:49 +0000 Subject: [PATCH 1/3] Updated / Deleted some examples --- example/multivariate_time_series/README.md | 4 +- example/named_entity_recognition/README.md | 1 - .../named_entity_recognition/src/metrics.py | 2 +- example/named_entity_recognition/src/ner.py | 2 +- example/nce-loss/README.md | 2 +- example/numpy-ops/numpy_softmax.py | 84 ------------------ example/onnx/super_resolution.py | 86 ------------------- example/python-howto/README.md | 37 -------- example/python-howto/data_iter.py | 76 ---------------- example/python-howto/debug_conv.py | 39 --------- example/python-howto/monitor_weights.py | 46 ---------- example/python-howto/multiple_outputs.py | 38 -------- .../README.md | 0 .../convert_data.py | 0 .../vaegan_mxnet.py | 0 15 files changed, 6 insertions(+), 411 deletions(-) delete mode 100644 example/numpy-ops/numpy_softmax.py delete mode 100644 example/onnx/super_resolution.py delete mode 100644 example/python-howto/README.md delete mode 100644 example/python-howto/data_iter.py delete mode 100644 example/python-howto/debug_conv.py delete mode 100644 example/python-howto/monitor_weights.py delete mode 100644 example/python-howto/multiple_outputs.py rename example/{mxnet_adversarial_vae => vae-gan}/README.md (100%) rename example/{mxnet_adversarial_vae => vae-gan}/convert_data.py (100%) rename example/{mxnet_adversarial_vae => vae-gan}/vaegan_mxnet.py (100%) diff --git a/example/multivariate_time_series/README.md b/example/multivariate_time_series/README.md index 704c86ae770e..87baca36d35f 100644 --- a/example/multivariate_time_series/README.md +++ b/example/multivariate_time_series/README.md @@ -3,6 +3,8 @@ - This repo contains an MXNet implementation of [this](https://arxiv.org/pdf/1703.07015.pdf) state of the art time series forecasting model. - You can find my blog post on the model [here](https://opringle.github.io/2018/01/05/deep_learning_multivariate_ts.html) +- A Gluon implementation is available [here](https://github.com/safrooze/LSTNet-Gluon) + ![](./docs/model_architecture.png) ## Running the code @@ -22,7 +24,7 @@ ## Hyperparameters -The default arguements in `lstnet.py` achieve equivolent performance to the published results. For other datasets, the following hyperparameters provide a good starting point: +The default arguements in `lstnet.py` achieve equivalent performance to the published results. For other datasets, the following hyperparameters provide a good starting point: - q = {2^0, 2^1, ... , 2^9} (1 week is typical value) - Convolutional num filters = {50, 100, 200} diff --git a/example/named_entity_recognition/README.md b/example/named_entity_recognition/README.md index 260c19d5ffb4..2b28b3b5039b 100644 --- a/example/named_entity_recognition/README.md +++ b/example/named_entity_recognition/README.md @@ -11,7 +11,6 @@ To reproduce the preprocessed training data: 1. Download and unzip the data: https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus/downloads/ner_dataset.csv 2. Move ner_dataset.csv into `./data` -3. create `./preprocessed_data` directory 3. `$ cd src && python preprocess.py` To train the model: diff --git a/example/named_entity_recognition/src/metrics.py b/example/named_entity_recognition/src/metrics.py index 40c5015e81be..d3d73782c62e 100644 --- a/example/named_entity_recognition/src/metrics.py +++ b/example/named_entity_recognition/src/metrics.py @@ -27,7 +27,7 @@ def load_obj(name): with open(name + '.pkl', 'rb') as f: return pickle.load(f) -tag_dict = load_obj("../preprocessed_data/tag_to_index") +tag_dict = load_obj("../data/tag_to_index") not_entity_index = tag_dict["O"] def classifer_metrics(label, pred): diff --git a/example/named_entity_recognition/src/ner.py b/example/named_entity_recognition/src/ner.py index 561db4c43d9e..7f5dd84527cc 100644 --- a/example/named_entity_recognition/src/ner.py +++ b/example/named_entity_recognition/src/ner.py @@ -34,7 +34,7 @@ parser = argparse.ArgumentParser(description="Deep neural network for multivariate time series forecasting", formatter_class=argparse.ArgumentDefaultsHelpFormatter) -parser.add_argument('--data-dir', type=str, default='../preprocessed_data', +parser.add_argument('--data-dir', type=str, default='../data', help='relative path to input data') parser.add_argument('--output-dir', type=str, default='../results', help='directory to save model files to') diff --git a/example/nce-loss/README.md b/example/nce-loss/README.md index 70730b477291..56e43525a7ca 100644 --- a/example/nce-loss/README.md +++ b/example/nce-loss/README.md @@ -29,7 +29,7 @@ The dataset used in the following examples is [text8](http://mattmahoney.net/dc/ * word2vec.py: a CBOW word2vec example using nce loss. You need to [download the text8 dataset](#dataset-download) before running this script. Command to start training on CPU (pass -g for training on GPU): ``` -python word2vec.py +python wordvec.py ``` diff --git a/example/numpy-ops/numpy_softmax.py b/example/numpy-ops/numpy_softmax.py deleted file mode 100644 index 88d247349292..000000000000 --- a/example/numpy-ops/numpy_softmax.py +++ /dev/null @@ -1,84 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -# pylint: skip-file -import mxnet as mx -from mxnet.test_utils import get_mnist_iterator -import numpy as np -import logging - - -class NumpySoftmax(mx.operator.NumpyOp): - def __init__(self): - super(NumpySoftmax, self).__init__(False) - - def list_arguments(self): - return ['data', 'label'] - - def list_outputs(self): - return ['output'] - - def infer_shape(self, in_shape): - data_shape = in_shape[0] - label_shape = (in_shape[0][0],) - output_shape = in_shape[0] - return [data_shape, label_shape], [output_shape] - - def forward(self, in_data, out_data): - x = in_data[0] - y = out_data[0] - y[:] = np.exp(x - x.max(axis=1).reshape((x.shape[0], 1))) - y /= y.sum(axis=1).reshape((x.shape[0], 1)) - - def backward(self, out_grad, in_data, out_data, in_grad): - l = in_data[1] - l = l.reshape((l.size,)).astype(np.int) - y = out_data[0] - dx = in_grad[0] - dx[:] = y - dx[np.arange(l.shape[0]), l] -= 1.0 - -# define mlp - -data = mx.symbol.Variable('data') -fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128) -act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu") -fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64) -act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu") -fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=10) -#mlp = mx.symbol.Softmax(data = fc3, name = 'mlp') -mysoftmax = NumpySoftmax() -mlp = mysoftmax(data=fc3, name = 'softmax') - -# data - -train, val = get_mnist_iterator(batch_size=100, input_shape = (784,)) - -# train - -logging.basicConfig(level=logging.DEBUG) - -# MXNET_CPU_WORKER_NTHREADS must be greater than 1 for custom op to work on CPU -context=mx.cpu() -# Uncomment this line to train on GPU instead of CPU -# context=mx.gpu(0) - -mod = mx.mod.Module(mlp, context=context) - -mod.fit(train_data=train, eval_data=val, optimizer='sgd', - optimizer_params={'learning_rate':0.1, 'momentum': 0.9, 'wd': 0.00001}, - num_epoch=10, batch_end_callback=mx.callback.Speedometer(100, 100)) diff --git a/example/onnx/super_resolution.py b/example/onnx/super_resolution.py deleted file mode 100644 index fcb8ccc88edb..000000000000 --- a/example/onnx/super_resolution.py +++ /dev/null @@ -1,86 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""Testing super_resolution model conversion""" -from __future__ import absolute_import as _abs -from __future__ import print_function -from collections import namedtuple -import logging -import numpy as np -from PIL import Image -import mxnet as mx -from mxnet.test_utils import download -import mxnet.contrib.onnx as onnx_mxnet - -# set up logger -logging.basicConfig() -LOGGER = logging.getLogger() -LOGGER.setLevel(logging.INFO) - -def import_onnx(): - """Import the onnx model into mxnet""" - model_url = 'https://s3.amazonaws.com/onnx-mxnet/examples/super_resolution.onnx' - download(model_url, 'super_resolution.onnx') - - LOGGER.info("Converting onnx format to mxnet's symbol and params...") - sym, arg_params, aux_params = onnx_mxnet.import_model('super_resolution.onnx') - LOGGER.info("Successfully Converted onnx format to mxnet's symbol and params...") - return sym, arg_params, aux_params - -def get_test_image(): - """Download and process the test image""" - # Load test image - input_image_dim = 224 - img_url = 'https://s3.amazonaws.com/onnx-mxnet/examples/super_res_input.jpg' - download(img_url, 'super_res_input.jpg') - img = Image.open('super_res_input.jpg').resize((input_image_dim, input_image_dim)) - img_ycbcr = img.convert("YCbCr") - img_y, img_cb, img_cr = img_ycbcr.split() - input_image = np.array(img_y)[np.newaxis, np.newaxis, :, :] - return input_image, img_cb, img_cr - -def perform_inference(sym, arg_params, aux_params, input_img, img_cb, img_cr): - """Perform inference on image using mxnet""" - metadata = onnx_mxnet.get_model_metadata('super_resolution.onnx') - data_names = [input_name[0] for input_name in metadata.get('input_tensor_data')] - # create module - mod = mx.mod.Module(symbol=sym, data_names=data_names, label_names=None) - mod.bind(for_training=False, data_shapes=[(data_names[0], input_img.shape)]) - mod.set_params(arg_params=arg_params, aux_params=aux_params) - - # run inference - batch = namedtuple('Batch', ['data']) - mod.forward(batch([mx.nd.array(input_img)])) - - # Save the result - img_out_y = Image.fromarray(np.uint8(mod.get_outputs()[0][0][0]. - asnumpy().clip(0, 255)), mode='L') - - result_img = Image.merge( - "YCbCr", [img_out_y, - img_cb.resize(img_out_y.size, Image.BICUBIC), - img_cr.resize(img_out_y.size, Image.BICUBIC)]).convert("RGB") - output_img_dim = 672 - assert result_img.size == (output_img_dim, output_img_dim) - LOGGER.info("Super Resolution example success.") - result_img.save("super_res_output.jpg") - return result_img - -if __name__ == '__main__': - MX_SYM, MX_ARG_PARAM, MX_AUX_PARAM = import_onnx() - INPUT_IMG, IMG_CB, IMG_CR = get_test_image() - perform_inference(MX_SYM, MX_ARG_PARAM, MX_AUX_PARAM, INPUT_IMG, IMG_CB, IMG_CR) diff --git a/example/python-howto/README.md b/example/python-howto/README.md deleted file mode 100644 index 29652408e02d..000000000000 --- a/example/python-howto/README.md +++ /dev/null @@ -1,37 +0,0 @@ -Python Howto Examples -===================== - -* [Configuring Net to Get Multiple Ouputs](multiple_outputs.py) -* [Configuring Image Record Iterator](data_iter.py) -* [Monitor Intermediate Outputs in the Network](monitor_weights.py) -* Set break point in C++ code of the symbol using gdb under Linux: - - * Build mxnet with following values: - - ``` - DEBUG=1 - USE_CUDA=0 # to make sure convolution-inl.h will be used - USE_CUDNN=0 # to make sure convolution-inl.h will be used - ``` - - * run python under gdb: ```gdb --args python debug_conv.py``` - * in gdb set break point on particular line of the code and run execution: - -``` -(gdb) break src/operator/convolution-inl.h:120 -(gdb) run -Breakpoint 1, mxnet::op::ConvolutionOp::Forward (this=0x12219d0, ctx=..., in_data=std::vector of length 3, capacity 4 = {...}, req=std::vector of length 1, capacity 1 = {...}, out_data=std::vector of length 1, capacity 1 = {...}, - aux_args=std::vector of length 0, capacity 0) at src/operator/./convolution-inl.h:121 -121 data.shape_[1] / param_.num_group * param_.kernel[0] * param_.kernel[1]); -(gdb) list -116 } -117 Tensor data = in_data[conv::kData].get(s); -118 Shape<3> wmat_shape = -119 Shape3(param_.num_group, -120 param_.num_filter / param_.num_group, -121 data.shape_[1] / param_.num_group * param_.kernel[0] * param_.kernel[1]); -122 Tensor wmat = -123 in_data[conv::kWeight].get_with_shape(wmat_shape, s); -124 Tensor out = out_data[conv::kOut].get(s); -125 #if defined(__CUDACC__) -``` diff --git a/example/python-howto/data_iter.py b/example/python-howto/data_iter.py deleted file mode 100644 index 81c8988a8e51..000000000000 --- a/example/python-howto/data_iter.py +++ /dev/null @@ -1,76 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""Create a Cifar data iterator. - -This example shows how to create a iterator reading from recordio, -introducing image augmentations and using a backend thread to hide IO cost. -All you need to do is to set some parameters. -""" -import mxnet as mx - -dataiter = mx.io.ImageRecordIter( - # Dataset Parameter - # Impulsary - # indicating the data file, please check the data is already there - path_imgrec="data/cifar/train.rec", - # Dataset/Augment Parameter - # Impulsary - # indicating the image size after preprocessing - data_shape=(3,28,28), - # Batch Parameter - # Impulsary - # tells how many images in a batch - batch_size=100, - # Augmentation Parameter - # Optional - # when offers mean_img, each image will subtract the mean value at each pixel - mean_img="data/cifar/cifar10_mean.bin", - # Augmentation Parameter - # Optional - # randomly crop a patch of the data_shape from the original image - rand_crop=True, - # Augmentation Parameter - # Optional - # randomly mirror the image horizontally - rand_mirror=True, - # Augmentation Parameter - # Optional - # randomly shuffle the data - shuffle=False, - # Backend Parameter - # Optional - # Preprocessing thread number - preprocess_threads=4, - # Backend Parameter - # Optional - # Prefetch buffer size - prefetch_buffer=4, - # Backend Parameter, - # Optional - # Whether round batch, - round_batch=True) - -batchidx = 0 -for dbatch in dataiter: - data = dbatch.data[0] - label = dbatch.label[0] - pad = dbatch.pad - index = dbatch.index - print("Batch", batchidx) - print(label.asnumpy().flatten()) - batchidx += 1 diff --git a/example/python-howto/debug_conv.py b/example/python-howto/debug_conv.py deleted file mode 100644 index 9de421d8e88e..000000000000 --- a/example/python-howto/debug_conv.py +++ /dev/null @@ -1,39 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -import mxnet as mx - -data_shape = (1,3,5,5) -class SimpleData(object): - - def __init__(self, data): - self.data = data - -data = mx.sym.Variable('data') -conv = mx.sym.Convolution(data=data, kernel=(3,3), pad=(1,1), stride=(1,1), num_filter=1) -mon = mx.mon.Monitor(1) - - -mod = mx.mod.Module(conv) -mod.bind(data_shapes=[('data', data_shape)]) -mod._exec_group.install_monitor(mon) -mod.init_params() - -input_data = mx.nd.ones(data_shape) -mod.forward(data_batch=SimpleData([input_data])) -res = mod.get_outputs()[0].asnumpy() -print(res) diff --git a/example/python-howto/monitor_weights.py b/example/python-howto/monitor_weights.py deleted file mode 100644 index 929b0e7bf79d..000000000000 --- a/example/python-howto/monitor_weights.py +++ /dev/null @@ -1,46 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -# pylint: skip-file -import mxnet as mx -from mxnet.test_utils import get_mnist_iterator -import numpy as np -import logging - -# network -data = mx.symbol.Variable('data') -fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128) -act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu") -fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64) -act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu") -fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=10) -mlp = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax') - -# data -train, val = get_mnist_iterator(batch_size=100, input_shape = (784,)) - -# monitor -def norm_stat(d): - return mx.nd.norm(d)/np.sqrt(d.size) -mon = mx.mon.Monitor(100, norm_stat) - -# train with monitor -logging.basicConfig(level=logging.DEBUG) -module = mx.module.Module(context=mx.cpu(), symbol=mlp) -module.fit(train_data=train, eval_data=val, monitor=mon, num_epoch=2, - batch_end_callback = mx.callback.Speedometer(100, 100), - optimizer_params=(('learning_rate', 0.1), ('momentum', 0.9), ('wd', 0.00001))) diff --git a/example/python-howto/multiple_outputs.py b/example/python-howto/multiple_outputs.py deleted file mode 100644 index 7c1ddd220557..000000000000 --- a/example/python-howto/multiple_outputs.py +++ /dev/null @@ -1,38 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - -"""Create a Multiple output configuration. - -This example shows how to create a multiple output configuration. -""" -from __future__ import print_function -import mxnet as mx - -net = mx.symbol.Variable('data') -fc1 = mx.symbol.FullyConnected(data=net, name='fc1', num_hidden=128) -net = mx.symbol.Activation(data=fc1, name='relu1', act_type="relu") -net = mx.symbol.FullyConnected(data=net, name='fc2', num_hidden=64) -out = mx.symbol.SoftmaxOutput(data=net, name='softmax') -# group fc1 and out together -group = mx.symbol.Group([fc1, out]) -print(group.list_outputs()) - -# You can go ahead and bind on the group -# executor = group.simple_bind(data=data_shape) -# executor.forward() -# executor.output[0] will be value of fc1 -# executor.output[1] will be value of softmax diff --git a/example/mxnet_adversarial_vae/README.md b/example/vae-gan/README.md similarity index 100% rename from example/mxnet_adversarial_vae/README.md rename to example/vae-gan/README.md diff --git a/example/mxnet_adversarial_vae/convert_data.py b/example/vae-gan/convert_data.py similarity index 100% rename from example/mxnet_adversarial_vae/convert_data.py rename to example/vae-gan/convert_data.py diff --git a/example/mxnet_adversarial_vae/vaegan_mxnet.py b/example/vae-gan/vaegan_mxnet.py similarity index 100% rename from example/mxnet_adversarial_vae/vaegan_mxnet.py rename to example/vae-gan/vaegan_mxnet.py From 02aab38384c05676faca525ee24bbb92fa92ba91 Mon Sep 17 00:00:00 2001 From: tdelteil Date: Wed, 24 Oct 2018 22:58:36 +0000 Subject: [PATCH 2/3] remove onnx test --- .../python-pytest/onnx/import/onnx_import_test.py | 15 --------------- 1 file changed, 15 deletions(-) diff --git a/tests/python-pytest/onnx/import/onnx_import_test.py b/tests/python-pytest/onnx/import/onnx_import_test.py index 573dd74a4714..c2d1e9cb2d36 100644 --- a/tests/python-pytest/onnx/import/onnx_import_test.py +++ b/tests/python-pytest/onnx/import/onnx_import_test.py @@ -149,21 +149,6 @@ def test_equal(): output = bkd_rep.run([input1, input2]) npt.assert_almost_equal(output[0], numpy_op) -def test_super_resolution_example(): - """Test the super resolution example in the example/onnx folder""" - sys.path.insert(0, os.path.join(CURR_PATH, '../../../../example/onnx/')) - import super_resolution - - sym, arg_params, aux_params = super_resolution.import_onnx() - - logging.info("Asserted the result of the onnx model conversion") - output_img_dim = 672 - input_image, img_cb, img_cr = super_resolution.get_test_image() - result_img = super_resolution.perform_inference(sym, arg_params, aux_params, - input_image, img_cb, img_cr) - - assert hashlib.md5(result_img.tobytes()).hexdigest() == '0d98393a49b1d9942106a2ed89d1e854' - assert result_img.size == (output_img_dim, output_img_dim) def get_test_files(name): """Extract tar file and returns model path and input, output data""" From 93702fb38cfafb300e10e6276346078cb3c4a63f Mon Sep 17 00:00:00 2001 From: tdelteil Date: Thu, 25 Oct 2018 16:31:36 +0000 Subject: [PATCH 3/3] remove onnx test --- ci/docker/runtime_functions.sh | 1 - 1 file changed, 1 deletion(-) diff --git a/ci/docker/runtime_functions.sh b/ci/docker/runtime_functions.sh index 43006f23974d..dc96547ee7c8 100755 --- a/ci/docker/runtime_functions.sh +++ b/ci/docker/runtime_functions.sh @@ -871,7 +871,6 @@ unittest_centos7_gpu() { integrationtest_ubuntu_cpu_onnx() { set -ex export PYTHONPATH=./python/ - python example/onnx/super_resolution.py pytest tests/python-pytest/onnx/import/mxnet_backend_test.py pytest tests/python-pytest/onnx/import/onnx_import_test.py pytest tests/python-pytest/onnx/import/gluon_backend_test.py