From a77f774ed179786fc8429d913a2da1d942528de9 Mon Sep 17 00:00:00 2001 From: Leonard Lausen Date: Fri, 17 Jul 2020 05:01:17 +0000 Subject: [PATCH] Remove NNPACK integration (#18722) --- docs/static_site/src/pages/api/faq/env_var.md | 3 - docs/static_site/src/pages/api/faq/nnpack.md | 162 ------------------ src/operator/convolution_v1.cc | 4 - src/operator/nn/convolution.cc | 3 - src/operator/nn/fully_connected.cc | 3 - src/operator/nn/pooling.cc | 3 - src/operator/nnpack/nnpack_convolution-inl.h | 124 -------------- .../nnpack/nnpack_fully_connected-inl.h | 108 ------------ src/operator/nnpack/nnpack_pooling-inl.h | 91 ---------- src/operator/nnpack/nnpack_util.cc | 37 ---- src/operator/nnpack/nnpack_util.h | 64 ------- 11 files changed, 602 deletions(-) delete mode 100644 docs/static_site/src/pages/api/faq/nnpack.md delete mode 100644 src/operator/nnpack/nnpack_convolution-inl.h delete mode 100644 src/operator/nnpack/nnpack_fully_connected-inl.h delete mode 100644 src/operator/nnpack/nnpack_pooling-inl.h delete mode 100644 src/operator/nnpack/nnpack_util.cc delete mode 100644 src/operator/nnpack/nnpack_util.h diff --git a/docs/static_site/src/pages/api/faq/env_var.md b/docs/static_site/src/pages/api/faq/env_var.md index 364fd1d7de6a..55e5f38ffa59 100644 --- a/docs/static_site/src/pages/api/faq/env_var.md +++ b/docs/static_site/src/pages/api/faq/env_var.md @@ -59,9 +59,6 @@ $env:MXNET_STORAGE_FALLBACK_LOG_VERBOSE=0 * MXNET_CPU_PRIORITY_NTHREADS - Values: Int ```(default=4)``` - The number of threads given to prioritized CPU jobs. -* MXNET_CPU_NNPACK_NTHREADS - - Values: Int ```(default=4)``` - - The number of threads used for NNPACK. NNPACK package aims to provide high-performance implementations of some layers for multi-core CPUs. Checkout [NNPACK]({{'/api/faq/nnpack'|relative_url}}) to know more about it. * MXNET_MP_WORKER_NTHREADS - Values: Int ```(default=1)``` - The number of scheduling threads on CPU given to multiprocess workers. Enlarge this number allows more operators to run in parallel in individual workers but please consider reducing the overall `num_workers` to avoid thread contention (not available on Windows). diff --git a/docs/static_site/src/pages/api/faq/nnpack.md b/docs/static_site/src/pages/api/faq/nnpack.md deleted file mode 100644 index 84bedee6052c..000000000000 --- a/docs/static_site/src/pages/api/faq/nnpack.md +++ /dev/null @@ -1,162 +0,0 @@ ---- -layout: page_category -title: NNPACK for Multi-Core CPU Support in MXNet -category: faq -faq_c: Speed -question: Can I use nnpack to improve the CPU performance of MXNet? -permalink: /api/faq/nnpack ---- - - - - - - - - - - - - - - - - - -### NNPACK for Multi-Core CPU Support in MXNet -[NNPACK](https://github.com/Maratyszcza/NNPACK) is an acceleration package -for neural network computations, which can run on x86-64, ARMv7, or ARM64 architecture CPUs. -Using NNPACK, higher-level libraries like _MXNet_ can speed up -the execution on multi-core CPU computers, including laptops and mobile devices. - -_MXNet_ supports NNPACK for forward propagation (inference only) in convolution, max-pooling, and fully-connected layers. -In this document, we give a high level overview of how to use NNPACK with _MXNet_. - - -### Conditions -The underlying implementation of NNPACK utilizes several acceleration methods, -including [fft](https://arxiv.org/abs/1312.5851) and [winograd](https://arxiv.org/abs/1509.09308). -These algorithms work better on some special `batch size`, `kernel size`, and `stride` settings than on other, -so depending on the context, not all convolution, max-pooling, or fully-connected layers can be powered by NNPACK. -When favorable conditions for running NNPACKS are not met, -_MXNet_ will fall back to the default implementation automatically. - -NNPACK only supports Linux and OS X systems. Windows is not supported at present. -The following table explains under which conditions NNPACK will work. - -| operation | conditions | -|:--------- |:---------- | -|convolution |2d convolution `and` no-bias=False `and` dilate=(1,1) `and` num_group=1 `and` batch-size = 1 or batch-size > 1 && stride = (1,1);| -|pooling | max-pooling `and` kernel=(2,2) `and` stride=(2,2) `and` pooling_convention=full | -|fully-connected| without any restrictions | - -### Build/Install NNPACK with MXNet - -If the trained model meets some conditions of using NNPACK, -you can build MXNet with NNPACK support. -Follow these simple steps: -* Build NNPACK shared library with the following commands. _MXNet_ will link NNPACK dynamically. - -Note: The following NNPACK installation instructions have been tested on Ubuntu 14.04 and 16.04. - -```bash -# Install Pip -$ sudo apt-get update -$ sudo apt-get install -y python-pip -$ sudo pip install --upgrade pip - -# Install Peach -$ git clone https://github.com/Maratyszcza/PeachPy.git -$ cd PeachPy -$ sudo pip install --upgrade -r requirements.txt -$ python setup.py generate -$ sudo pip install --upgrade . - -# Install Ninja Build System -$ sudo apt-get install ninja-build -$ pip install ninja-syntax - -# Build NNPack shared library -$ cd ~ -$ git clone --recursive https://github.com/Maratyszcza/NNPACK.git -$ cd NNPACK -# Latest NNPACK do not support building NNPACK as shared library using --enable-shared flag -# Reset to commit that supports it. -$ git reset --hard 9c6747d7b80051b40e6f92d6828e2ed997529cd2 -$ git submodule init && git submodule update --recursive -$ python ./configure.py --enable-shared -$ ninja -$ cd ~ - -``` - -* Set lib path of NNPACK as the environment variable, e.g. `export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$YOUR_NNPACK_INSTALL_PATH/lib` -* Add the include file of NNPACK and its third-party to `ADD_CFLAGS` in config.mk, e.g. `ADD_CFLAGS = -I$(YOUR_NNPACK_INSTALL_PATH)/include/ -I$(YOUR_NNPACK_INSTALL_PATH)/third-party/pthreadpool/include/` -* Set `USE_NNPACK = 1` in config.mk. -* Build MXNet from source following the [install guide]({{'/get_started'|relative_url}}). - -### NNPACK Performance - -Though not all convolutional, pooling, and fully-connected layers can make full use of NNPACK, -for some popular models it provides significant speedups. These include the most popular image recognition networks: Alexnet, VGG, and Inception-bn. - -To benchmark NNPACK, we use `example/image-classification/benchmark_score.py`(changed with more range of batch-size). We use CPU e5-2670, MXNET_CPU_NNPACK_NTHREADS=4. - -build MXNet without NNPACK, the log is: -``` -INFO:root:network: alexnet -INFO:root:device: cpu(0) -INFO:root:batch size 1, image/sec: 6.389429 -INFO:root:batch size 2, image/sec: 7.961457 -INFO:root:batch size 4, image/sec: 8.950112 -INFO:root:batch size 8, image/sec: 9.578176 -INFO:root:batch size 16, image/sec: 9.701248 -INFO:root:batch size 32, image/sec: 9.839940 -INFO:root:batch size 64, image/sec: 10.075369 -INFO:root:batch size 128, image/sec: 10.053556 -INFO:root:batch size 256, image/sec: 9.972228 -INFO:root:network: vgg -INFO:root:device: cpu(0) -INFO:root:batch size 1, image/sec: 1.223822 -INFO:root:batch size 2, image/sec: 1.322814 -INFO:root:batch size 4, image/sec: 1.383586 -INFO:root:batch size 8, image/sec: 1.402376 -INFO:root:batch size 16, image/sec: 1.415972 -INFO:root:batch size 32, image/sec: 1.428377 -INFO:root:batch size 64, image/sec: 1.443987 -INFO:root:batch size 128, image/sec: 1.427531 -INFO:root:batch size 256, image/sec: 1.435279 -``` - -build MXNet with NNPACK, log is: - -``` -INFO:root:network: alexnet -INFO:root:device: cpu(0) -INFO:root:batch size 1, image/sec: 19.027215 -INFO:root:batch size 2, image/sec: 12.879975 -INFO:root:batch size 4, image/sec: 17.424076 -INFO:root:batch size 8, image/sec: 21.283966 -INFO:root:batch size 16, image/sec: 24.469325 -INFO:root:batch size 32, image/sec: 25.910348 -INFO:root:batch size 64, image/sec: 27.441672 -INFO:root:batch size 128, image/sec: 28.009156 -INFO:root:batch size 256, image/sec: 28.918950 -INFO:root:network: vgg -INFO:root:device: cpu(0) -INFO:root:batch size 1, image/sec: 3.980907 -INFO:root:batch size 2, image/sec: 2.392069 -INFO:root:batch size 4, image/sec: 3.610553 -INFO:root:batch size 8, image/sec: 4.994450 -INFO:root:batch size 16, image/sec: 6.396612 -INFO:root:batch size 32, image/sec: 7.614288 -INFO:root:batch size 64, image/sec: 8.826084 -INFO:root:batch size 128, image/sec: 9.193653 -INFO:root:batch size 256, image/sec: 9.991472 -``` - -The results show that NNPACK can confer a speedup of about 2X~7X as compared to the original _MXNet_ CPU implementation. - -### Tips - -NNPACK aims to provide high-performance implementations of some layers for multi-core CPUs, so you can easily set the thread number by changing the environmental variable `MXNET_CPU_NNPACK_NTHREADS`. However, we found that the performance is not proportional to the number of threads, and suggest using 4~8 threads when using NNPACK. diff --git a/src/operator/convolution_v1.cc b/src/operator/convolution_v1.cc index 723dc867f52f..5d1ce3108a3f 100644 --- a/src/operator/convolution_v1.cc +++ b/src/operator/convolution_v1.cc @@ -25,10 +25,6 @@ */ #include "./convolution_v1-inl.h" -#if MXNET_USE_NNPACK == 1 -#include "./nnpack/nnpack_convolution-inl.h" -#endif // MXNET_USE_NNPACK - namespace mxnet { namespace op { DMLC_REGISTER_PARAMETER(ConvolutionV1Param); diff --git a/src/operator/nn/convolution.cc b/src/operator/nn/convolution.cc index 3ebb67ad0aa0..05d4cb74318b 100644 --- a/src/operator/nn/convolution.cc +++ b/src/operator/nn/convolution.cc @@ -27,9 +27,6 @@ #include "./convolution-inl.h" #include "../elemwise_op_common.h" #include "../operator_common.h" -#if MXNET_USE_NNPACK == 1 -#include "../nnpack/nnpack_pooling-inl.h" -#endif // MXNET_USE_NNPACK #if MXNET_USE_MKLDNN == 1 #include "./mkldnn/mkldnn_base-inl.h" #include "./mkldnn/mkldnn_ops-inl.h" diff --git a/src/operator/nn/fully_connected.cc b/src/operator/nn/fully_connected.cc index 1322c86f9e47..7b243f1b2eb2 100644 --- a/src/operator/nn/fully_connected.cc +++ b/src/operator/nn/fully_connected.cc @@ -25,9 +25,6 @@ #include "./fully_connected-inl.h" #include "./mkldnn/mkldnn_ops-inl.h" #include "./mkldnn/mkldnn_base-inl.h" -#if MXNET_USE_NNPACK == 1 -#include "../nnpack/nnpack_fully_connected-inl.h" -#endif // MXNET_USE_NNPACK namespace mxnet { namespace op { diff --git a/src/operator/nn/pooling.cc b/src/operator/nn/pooling.cc index 56edf74ee67a..4c66f2c90eec 100644 --- a/src/operator/nn/pooling.cc +++ b/src/operator/nn/pooling.cc @@ -25,9 +25,6 @@ */ #include "../elemwise_op_common.h" #include "./pooling-inl.h" -#if MXNET_USE_NNPACK == 1 -#include "../nnpack/nnpack_pooling-inl.h" -#endif // MXNET_USE_NNPACK #if MXNET_USE_MKLDNN == 1 #include "./mkldnn/mkldnn_pooling-inl.h" #include "./mkldnn/mkldnn_base-inl.h" diff --git a/src/operator/nnpack/nnpack_convolution-inl.h b/src/operator/nnpack/nnpack_convolution-inl.h deleted file mode 100644 index 0e2c73693d15..000000000000 --- a/src/operator/nnpack/nnpack_convolution-inl.h +++ /dev/null @@ -1,124 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * Copyright (c) 2016 by Contributors - * \file nnpack_convolution-inl.h - * \brief - * \author Carwin -*/ -#ifndef MXNET_OPERATOR_NNPACK_NNPACK_CONVOLUTION_INL_H_ -#define MXNET_OPERATOR_NNPACK_NNPACK_CONVOLUTION_INL_H_ - -#include -#include -#include -#include -#include -#include -#include -#include -#include "../convolution-inl.h" -#include "nnpack.h" -#include "nnpack_util.h" - -namespace mxnet { -namespace op { - -template -class NNPACKConvolutionOp : public ConvolutionOp { - private: - ConvolutionParam param_; - - public: - explicit NNPACKConvolutionOp(ConvolutionParam p) - : ConvolutionOp(p) { - this->param_ = p; - } - - public: - virtual void Forward(const OpContext &ctx, const std::vector &in_data, - const std::vector &req, - const std::vector &out_data, - const std::vector &aux_args) { - using namespace mshadow; - using namespace mshadow::expr; - Stream *s = ctx.get_stream(); - Tensor data = in_data[conv::kData].get(s); - const size_t batch_size = data.shape_[0]; - const size_t input_c = data.shape_[1]; - const size_t input_h = data.shape_[2]; - const size_t input_w = data.shape_[3]; - Shape<3> wmat_shape = - Shape3(param_.num_group, param_.num_filter / param_.num_group, - input_c / param_.num_group * param_.kernel[0] * - param_.kernel[1]); - Tensor wmat = - in_data[conv::kWeight].get_with_shape(wmat_shape, s); - Tensor out = out_data[conv::kOut].get(s); - nnp_size input_size = {input_w, input_h}; - nnp_padding input_padding = {param_.pad[0], param_.pad[1], param_.pad[0], - param_.pad[1]}; - nnp_size kernel_size = {param_.kernel[1], param_.kernel[0]}; - nnp_size output_subsampling = {param_.stride[1], param_.stride[0]}; - Tensor bias = in_data[conv::kBias].get(s); - - nnp_convolution_algorithm algorithm = nnp_convolution_algorithm_auto; - nnp_convolution_transform_strategy kts = nnp_convolution_transform_strategy_tuple_based; - nnp_status status = nnp_status_success; - if (batch_size == 1) { - status = nnp_convolution_inference( - algorithm, // enum nnp_convolution_algorithm, - kts, // enum nnp_convolution_transform_strategy, - input_c, // size_t input_channels, - param_.num_filter, // size_t output_channels, - input_size, // struct nnp_size input_size, - input_padding, // struct nnp_padding input_padding, - kernel_size, // struct nnp_size kernel_size, - output_subsampling, // struct nnp_size output_subsampling, - data.dptr_, // const float input[], - wmat.dptr_, // const float kernel[], - bias.dptr_, // const float bias[], - out.dptr_, // float output[], - nnpackinitialize.threadpool, // pthreadpool_t threadpool, - nullptr); - } else { - status = nnp_convolution_output( - algorithm, // enum nnp_convolution_algorithm algorithm, - batch_size, // size_t batch size of input tensor - input_c, // size_t input_channels, - param_.num_filter, // size_t output_channels, - input_size, // struct nnp_size input_size, - input_padding, // struct nnp_padding input_padding, - kernel_size, // struct nnp_size kernel_size, - data.dptr_, // const float input[], - wmat.dptr_, // const float kernel[], - bias.dptr_, // const float bias[], - out.dptr_, // float output[], - nnpackinitialize.threadpool, // pthreadpool_t threadpool, - nullptr); - } - if (nnp_status_success != status) { - LOG(FATAL) << "nnpack convolution feedforward failed status=" << status; - } - } -}; // class NNPACKConvolutionOp -} // namespace op -} // namespace mxnet -#endif // MXNET_OPERATOR_NNPACK_NNPACK_CONVOLUTION_INL_H_ diff --git a/src/operator/nnpack/nnpack_fully_connected-inl.h b/src/operator/nnpack/nnpack_fully_connected-inl.h deleted file mode 100644 index 422334949c48..000000000000 --- a/src/operator/nnpack/nnpack_fully_connected-inl.h +++ /dev/null @@ -1,108 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * Copyright (c) 2016 by Contributors - * \file nnpack_fully_connected-inl.h - * \brief - * \author Wei Wu -*/ -#ifndef MXNET_OPERATOR_NNPACK_NNPACK_FULLY_CONNECTED_INL_H_ -#define MXNET_OPERATOR_NNPACK_NNPACK_FULLY_CONNECTED_INL_H_ - -#include -#include -#include -#include -#include -#include -#include -#include -#include "../nn/fully_connected-inl.h" -#include "nnpack.h" -#include "nnpack_util.h" - -namespace mxnet { -namespace op { - -template -class NNPACKFullyConnectedOp : public FullyConnectedOp { - private: - FullyConnectedParam param_; - - public: - explicit NNPACKFullyConnectedOp(FullyConnectedParam p) - : FullyConnectedOp(p) { - this->param_ = p; - } - - public: - virtual void Forward(const OpContext &ctx, const std::vector &in_data, - const std::vector &req, - const std::vector &out_data, - const std::vector &aux_args) { - using namespace mshadow; - using namespace mshadow::expr; - if (req[fullc::kOut] == kNullOp) return; - CHECK_EQ(req[fullc::kOut], kWriteTo); - size_t expected = param_.no_bias ? 2 : 3; - CHECK_EQ(in_data.size(), expected); - CHECK_EQ(out_data.size(), 1); - const mxnet::TShape& ishape = in_data[fullc::kData].shape_; - const mxnet::TShape& oshape = out_data[fullc::kOut].shape_; - Stream *s = ctx.get_stream(); - Tensor data = in_data[fullc::kData].get_with_shape( - Shape2(ishape[0], ishape.ProdShape(1, ishape.ndim())), s); - Tensor wmat = in_data[fullc::kWeight].get(s); - Tensor out = out_data[fullc::kOut].get_with_shape( - Shape2(oshape[0], oshape.ProdShape(1, oshape.ndim())), s); - const size_t batch_size = data.shape_[0]; - const size_t input_c = data.shape_[1]; - nnp_status status = nnp_status_success; - if (batch_size == 1) { - status = nnp_fully_connected_inference( - input_c, // size_t input_channels, - param_.num_hidden, // size_t output_channels, - data.dptr_, // const float input[], - wmat.dptr_, // const float kernel[], - out.dptr_, // float output[], - nnpackinitialize.threadpool); // pthreadpool_t threadpool, - } else { - status = nnp_fully_connected_output( - batch_size, // size_t batch size of input tensor - input_c, // size_t input_channels, - param_.num_hidden, // size_t output_channels, - data.dptr_, // const float input[], - wmat.dptr_, // const float kernel[], - out.dptr_, // float output[], - nnpackinitialize.threadpool, // pthreadpool_t threadpool, - nullptr); - } - if (nnp_status_success != status) { - LOG(FATAL) << "nnpack fully conneted feedforward failed status=" << status; - } - if (!param_.no_bias) { - Tensor bias = in_data[fullc::kBias].get(s); - out += repmat(bias, data.size(0)); - } - } -}; // class NNPACKFullyConnectedOp -} // namespace op -} // namespace mxnet -#endif // MXNET_OPERATOR_NNPACK_NNPACK_FULLY_CONNECTED_INL_H_ diff --git a/src/operator/nnpack/nnpack_pooling-inl.h b/src/operator/nnpack/nnpack_pooling-inl.h deleted file mode 100644 index 3fad77024a9a..000000000000 --- a/src/operator/nnpack/nnpack_pooling-inl.h +++ /dev/null @@ -1,91 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * Copyright (c) 2016 by Contributors - * \file nnpack_pooling-inl.h - * \brief - * \author Wei Wu -*/ -#ifndef MXNET_OPERATOR_NNPACK_NNPACK_POOLING_INL_H_ -#define MXNET_OPERATOR_NNPACK_NNPACK_POOLING_INL_H_ - -#include -#include -#include -#include -#include -#include -#include -#include -#include "../nn/pooling-inl.h" -#include "nnpack.h" -#include "nnpack_util.h" - -namespace mxnet { -namespace op { - -template -class NNPACKPoolingOp : public PoolingOp { - private: - PoolingParam param_; - - public: - explicit NNPACKPoolingOp(PoolingParam p) - : PoolingOp(p) { - this->param_ = p; - } - - public: - virtual void Forward(const OpContext &ctx, const std::vector &in_data, - const std::vector &req, - const std::vector &out_data, - const std::vector &aux_args) { - using namespace mshadow; - using namespace mshadow::expr; - Stream *s = ctx.get_stream(); - Tensor data = in_data[pool_enum::kData].get(s); - const size_t batch_size = data.shape_[0]; - const size_t input_c = data.shape_[1]; - const size_t input_h = data.shape_[2]; - const size_t input_w = data.shape_[3]; - Tensor out = out_data[pool_enum::kOut].get(s); - nnp_size input_size = {input_w, input_h}; - nnp_padding input_padding = {param_.pad[0], param_.pad[1], param_.pad[0], - param_.pad[1]}; - nnp_size kernel_size = {param_.kernel[1], param_.kernel[0]}; - nnp_size output_subsampling = {param_.stride[1], param_.stride[0]}; - nnp_status status = nnp_max_pooling_output( - batch_size, // size_t batch size of input tensor - input_c, // size_t input_channels, - input_size, // struct nnp_size input_size, - input_padding, // struct nnp_padding input_padding, - kernel_size, // struct nnp_size kernel_size, - output_subsampling, // struct nnp_size output_subsampling, - data.dptr_, // const float input[], - out.dptr_, // float output[], - nnpackinitialize.threadpool); // pthreadpool_t threadpool, - if (nnp_status_success != status) { - LOG(FATAL) << "nnpack max pooling feedforward failed status=" << status; - } - } -}; // class NNPACKPoolingOp -} // namespace op -} // namespace mxnet -#endif // MXNET_OPERATOR_NNPACK_NNPACK_POOLING_INL_H_ diff --git a/src/operator/nnpack/nnpack_util.cc b/src/operator/nnpack/nnpack_util.cc deleted file mode 100644 index 7d075e0554ba..000000000000 --- a/src/operator/nnpack/nnpack_util.cc +++ /dev/null @@ -1,37 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * Copyright (c) 2016 by Contributors - * \file nnpack_util.cc - * \brief - * \author Wei Wu -*/ - -#if MXNET_USE_NNPACK == 1 -#include "nnpack_util.h" - -namespace mxnet { -namespace op { - -NNPACKInitialize nnpackinitialize; - -} // namespace op -} // namespace mxnet -#endif // MXNET_USE_NNPACK diff --git a/src/operator/nnpack/nnpack_util.h b/src/operator/nnpack/nnpack_util.h deleted file mode 100644 index 2edfb79ad46e..000000000000 --- a/src/operator/nnpack/nnpack_util.h +++ /dev/null @@ -1,64 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -/*! - * Copyright (c) 2016 by Contributors - * \file nnpack_util.h - * \brief - * \author Carwin -*/ -#ifndef MXNET_OPERATOR_NNPACK_NNPACK_UTIL_H_ -#define MXNET_OPERATOR_NNPACK_NNPACK_UTIL_H_ - -#include -#include -#include - -namespace mxnet { -namespace op { - -class NNPACKInitialize { - public: - pthreadpool_t threadpool; - - public: - NNPACKInitialize() { - nnp_status status = nnp_initialize(); - if (nnp_status_success != status) { - LOG(FATAL) << "nnp_initialize failed status=" << status; - } - int num_threads = dmlc::GetEnv("MXNET_CPU_NNPACK_NTHREADS", 4); - this->threadpool = pthreadpool_create(num_threads); - } - virtual ~NNPACKInitialize() { - nnp_status status = nnp_deinitialize(); - if (nnp_status_success != status) { - LOG(FATAL) << "nnp_deinitialize failed status=" << status; - } - pthreadpool_destroy(threadpool); - } -}; - -// nnpackinitialize will be used in all other nnpack op -extern NNPACKInitialize nnpackinitialize; - -} // namespace op -} // namespace mxnet - -#endif // MXNET_OPERATOR_NNPACK_NNPACK_UTIL_H_