From 872b533c45a627c79e8be9800bdcadebd77b28af Mon Sep 17 00:00:00 2001 From: Xi Wang Date: Thu, 26 Dec 2019 10:56:21 +0800 Subject: [PATCH] randn implemented (#17141) --- python/mxnet/numpy/random.py | 43 +++++++++++++++++++++++++- tests/python/unittest/test_numpy_op.py | 22 +++++++++++++ 2 files changed, 64 insertions(+), 1 deletion(-) diff --git a/python/mxnet/numpy/random.py b/python/mxnet/numpy/random.py index ebc24de63282..95719a005cec 100644 --- a/python/mxnet/numpy/random.py +++ b/python/mxnet/numpy/random.py @@ -20,7 +20,7 @@ from __future__ import absolute_import from ..ndarray import numpy as _mx_nd_np -__all__ = ["randint", "uniform", "normal", "choice", "rand", "multinomial", "shuffle"] +__all__ = ["randint", "uniform", "normal", "choice", "rand", "multinomial", "shuffle", "randn"] def randint(low, high=None, size=None, dtype=None, ctx=None, out=None): @@ -357,3 +357,44 @@ def shuffle(x): [0., 1., 2.]]) """ _mx_nd_np.random.shuffle(x) + + +def randn(*size, **kwargs): + r"""Return a sample (or samples) from the "standard normal" distribution. + If positive, int_like or int-convertible arguments are provided, + `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled + with random floats sampled from a univariate "normal" (Gaussian) + distribution of mean 0 and variance 1 (if any of the :math:`d_i` are + floats, they are first converted to integers by truncation). A single + float randomly sampled from the distribution is returned if no + argument is provided. + This is a convenience function. If you want an interface that takes a + tuple as the first argument, use `numpy.random.standard_normal` instead. + Parameters + ---------- + d0, d1, ..., dn : int, optional + The dimensions of the returned array, should be all positive. + If no argument is given a single Python float is returned. + Returns + ------- + Z : ndarray + A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from + the standard normal distribution, or a single such float if + no parameters were supplied. + Notes + ----- + For random samples from :math:`N(\mu, \sigma^2)`, use: + ``sigma * np.random.randn(...) + mu`` + Examples + -------- + >>> np.random.randn() + 2.1923875335537315 #random + Two-by-four array of samples from N(3, 6.25): + >>> 2.5 * np.random.randn(2, 4) + 3 + array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random + [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random + """ + output_shape = () + for s in size: + output_shape += (s,) + return _mx_nd_np.random.normal(0, 1, size=output_shape, **kwargs) diff --git a/tests/python/unittest/test_numpy_op.py b/tests/python/unittest/test_numpy_op.py index af9228d45991..4bbf9b8040e2 100644 --- a/tests/python/unittest/test_numpy_op.py +++ b/tests/python/unittest/test_numpy_op.py @@ -3089,6 +3089,28 @@ def hybrid_forward(self, F, x): assert out.shape == expected_shape +@with_seed() +@use_np +def test_np_randn(): + # Test shapes. + shapes = [ + (3, 3), + (3, 4), + (0, 0), + (3, 3, 3), + (0, 0, 0), + (2, 2, 4, 3), + (2, 2, 4, 3), + (2, 0, 3, 0), + (2, 0, 2, 3) + ] + dtypes = ['float16', 'float32', 'float64'] + for dtype in dtypes: + for shape in shapes: + data_mx = np.random.randn(*shape, dtype=dtype) + assert data_mx.shape == shape + + @with_seed() @use_np def test_random_seed():