diff --git a/tests/python/unittest/test_operator.py b/tests/python/unittest/test_operator.py index 78285b64543a..f246689e34e6 100644 --- a/tests/python/unittest/test_operator.py +++ b/tests/python/unittest/test_operator.py @@ -1616,7 +1616,6 @@ def test_convolution_grouping(): np.testing.assert_allclose(arr1.asnumpy(), arr2.asnumpy(), rtol=1e-3, atol=1e-3) -@unittest.skip("Flaky test https://github.com/apache/incubator-mxnet/issues/12203") @with_seed() def test_depthwise_convolution(): for dim in [1,2]: @@ -1650,7 +1649,7 @@ def test_depthwise_convolution(): exe2 = y2.simple_bind(mx.cpu(), x=shape, w=(num_filter, shape[1]//num_group)+kernel, b=(num_filter,)) for arr1, arr2 in zip(exe1.arg_arrays, exe2.arg_arrays): - arr1[:] = np.random.normal(size=arr1.shape) + arr1[:] = np.float32(np.random.normal(size=arr1.shape)) arr2[:] = arr1 exe1.forward(is_train=True) exe1.backward(exe1.outputs[0]) @@ -1658,7 +1657,7 @@ def test_depthwise_convolution(): exe2.backward(exe2.outputs[0]) for arr1, arr2 in zip(exe1.outputs + exe1.grad_arrays, exe2.outputs + exe2.grad_arrays): - np.testing.assert_allclose(arr1.asnumpy(), arr2.asnumpy(), rtol=1e-3, atol=1e-3) + np.testing.assert_allclose(arr1.asnumpy(), arr2.asnumpy(), rtol=1e-2, atol=1e-3) def gen_broadcast_data(idx): # Manually set test cases