This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
/
build_subgraph.cc
733 lines (694 loc) · 30.3 KB
/
build_subgraph.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2018 by Contributors
* \file build_subgraph.cc
* \brief
*/
#include <nnvm/graph.h>
#include <nnvm/pass.h>
#include <mxnet/op_attr_types.h>
#include <unordered_set>
#include <stack>
#include <queue>
#include "./subgraph_property.h"
#define DEBUG_SUBGRAPH 0
namespace nnvm {
NodePtr CreateVariableNode(const std::string& name);
}
namespace mxnet {
namespace op {
namespace sg { // sg stands for subgraph
#if DEBUG_SUBGRAPH
void PrintSubgraph(const std::vector<BiDirectedNode*>& simple_nodes) {
std::string op_names = "";
for (size_t i = 0; i < simple_nodes.size(); ++i) {
op_names += simple_nodes[i]->node->attrs.name + ' ';
}
LOG(INFO) << "Subgraph node names: " << op_names;
}
void PrintNodeEntry(const nnvm::NodeEntry& entry) {
std::string ret = "NodeEntry: node_name=" + entry.node->attrs.name
+ ", index=" + std::to_string(entry.index) + ", version=" + std::to_string(entry.version);
LOG(INFO) << ret;
}
void PrintNodeEntries(const std::vector<nnvm::NodeEntry*>& entries) {
for (size_t i = 0; i < entries.size(); ++i) {
PrintNodeEntry(*entries[i]);
}
}
#endif
/*!
* \brief Given a MXNet computational graph, create an undirected graph from it.
* \param g the MXNet computational graph
* \param simple_nodes the nodes of undirected graph in top sorted order
*/
void CreateSimpleGraph(const nnvm::Graph& g,
std::vector<BiDirectedNodePtr>* simple_nodes) {
const auto& indexed_graph = g.indexed_graph();
simple_nodes->reserve(indexed_graph.num_nodes());
DFSVisit(g.outputs, [&](const nnvm::NodePtr& node) {
BiDirectedNodePtr sn = BiDirectedNode::Create();
sn->node = node.get();
for (size_t i = 0; i < sn->node->inputs.size(); ++i) {
const auto& e = sn->node->inputs[i];
const auto input_nid = indexed_graph.node_id(e.node.get());
CHECK_LT(input_nid, simple_nodes->size());
auto& input_node_outputs = (*simple_nodes)[input_nid]->outputs;
auto it = input_node_outputs.find(sn->node);
if (it == input_node_outputs.end()) {
input_node_outputs.emplace(sn->node, std::vector<size_t>{i});
} else {
it->second.push_back(i);
}
}
simple_nodes->emplace_back(std::move(sn));
});
}
/*!
* \brief Reset labels of the subgraph nodes to the original state
* and clear the vector of subgraph nodes.
*/
void ResetNodeLabels(const nnvm::Graph& g,
const std::vector<BiDirectedNodePtr>& simple_nodes,
std::vector<BiDirectedNode*>* subgraph_nodes) {
for (auto n : *subgraph_nodes) {
const auto nid = g.indexed_graph().node_id(n->node);
simple_nodes[nid]->label = -1;
}
subgraph_nodes->clear();
}
/*!
* \brief This function traverses the nodes in a computation graph from a starting
* node following the input edges and output edges, and marks all nodes that
* can be accessed from the starting node. Before the function returns,
* it will conduct checking whether there is a loop between the potential subgraph
* and the outside nodes. If so, add the node that should break the loop
* in excluded_nodes and return false. Otherwise, return true.
* \param g the whole graph
* \subgraph_selector determines whether the visited node should be choosen or not
* \label the label of the current subgraph
* \snid node id of the seed simple node
* \simple_nodes all simple nodes in the top sorted order
* \subgraph_nodes all the nodes belonging to the same subgraph of seed node
* \excluded_nodes set of nodes that should be excluded from the current subgraph
*/
bool LabelSubgraph(const nnvm::Graph& g, SubgraphSelectorV2Ptr subgraph_selector, const int label,
const size_t snid, const std::vector<BiDirectedNodePtr>& simple_nodes,
std::vector<BiDirectedNode*>* subgraph_nodes,
std::unordered_set<const BiDirectedNode*>* excluded_nodes) {
const auto& indexed_graph = g.indexed_graph();
std::queue<BiDirectedNode*> node_queue;
CHECK_EQ(simple_nodes[snid]->label, -1);
simple_nodes[snid]->label = label;
node_queue.push(simple_nodes[snid].get());
// key: nodes that serve as input/output nodes to the subgraph
// value: pair of vectors of nodes in the subgraph. The first vector contains the
// output nodes of the key in the subgraph, and the second vector contains the
// input nodes of the key in the subgraph.
// If a non-subgraph node has inputs from the subgraph and the other non-subgraph node
// has outputs to the subgraph, and the first non-subgraph node is an ancestor
// of the second non-subgraph node, there exits a cycle.
// When breaking the cycle, we want to start from removing the node with the largest node id
// in the subgraph.
std::unordered_map<const nnvm::Node*,
std::pair<std::vector<const nnvm::Node*>,
std::vector<const nnvm::Node*>>> non_subgraph_node_map;
while (!node_queue.empty()) {
BiDirectedNode* cur_node = node_queue.front();
node_queue.pop();
subgraph_nodes->push_back(cur_node);
// get qualified adjacent input nodes
for (auto& e : cur_node->node->inputs) {
const auto node = e.node.get();
const auto nid = indexed_graph.node_id(node);
auto snode = simple_nodes[nid].get();
CHECK_LT(nid, simple_nodes.size());
const bool select_input =
(snode->label == -1) && (!excluded_nodes || !excluded_nodes->count(snode)) &&
subgraph_selector->SelectInput(*cur_node, *snode);
if (select_input) {
// e.node is a subgraph node
snode->label = label;
node_queue.push(snode);
} else if (snode->label == -1) {
// e.node is an input node of the subgraph
non_subgraph_node_map[e.node.get()].first.push_back(cur_node->node);
}
}
// get qualified output nodes
for (auto it = cur_node->outputs.begin(); it != cur_node->outputs.end(); ++it) {
const auto nid = indexed_graph.node_id(it->first);
auto snode = simple_nodes[nid].get();
CHECK_LT(nid, simple_nodes.size());
const bool select_output =
(snode->label == -1) && (!excluded_nodes || !excluded_nodes->count(snode)) &&
subgraph_selector->SelectOutput(*cur_node, *snode);
if (select_output) {
// it->first is a subgraph node
snode->label = label;
node_queue.push(snode);
} else if (snode->label == -1) {
// it->first is an output node of the subgraph
non_subgraph_node_map[it->first].second.push_back(cur_node->node);
}
}
}
// prepare to check if there is a cycle
auto node_cmp = [&] (const nnvm::Node* node1, const nnvm::Node* node2) {
return indexed_graph.node_id(node1) < indexed_graph.node_id(node2);
};
std::vector<const nnvm::Node*> non_subgraph_nodes;
non_subgraph_nodes.reserve(non_subgraph_node_map.size());
for (auto& kv : non_subgraph_node_map) {
auto& output_nodes = kv.second.first;
std::sort(output_nodes.begin(), output_nodes.end(), node_cmp);
auto& input_nodes = kv.second.second;
std::sort(input_nodes.begin(), input_nodes.end(), node_cmp);
non_subgraph_nodes.push_back(kv.first);
}
// check whether there is a cycle between the subgraph and its input/output nodes
auto is_ancestor = [&](const nnvm::Node* ancestor, const nnvm::Node* descendant,
const std::vector<BiDirectedNode*>& snodes) {
if (ancestor == descendant) return true;
std::unordered_set<nnvm::Node*> snode_set;
for (const auto& sn : snodes) {
snode_set.insert(sn->node);
}
std::stack<const nnvm::Node*> s;
s.push(descendant);
size_t count = 0;
while (!s.empty()) {
CHECK_LT(count, indexed_graph.num_nodes()) << "Finding ancestor failed. There is probably"
" a loop in the graph";
++count;
const nnvm::Node* top = s.top();
s.pop();
if (top == ancestor) {
return true;
}
for (const auto& entry : top->inputs) {
// when searching for the ancestor, the path cannot cross any subgraph node
if (!snode_set.count(entry.node.get())) {
s.push(entry.node.get());
}
}
}
return false;
};
std::sort(non_subgraph_nodes.begin(), non_subgraph_nodes.end(), node_cmp);
int excluded_node_id = -1;
for (size_t i = 0; i < non_subgraph_nodes.size(); ++i) {
auto it1 = non_subgraph_node_map.find(non_subgraph_nodes[i]);
CHECK(it1 != non_subgraph_node_map.end());
auto& output_nodes = it1->second.first; // has been top sorted
auto& input_nodes = it1->second.second; // has been top sorted
if (!output_nodes.empty() && !input_nodes.empty()) {
// there is a loop between node i and the subgraph
const auto node_id = std::max(indexed_graph.node_id(output_nodes.back()),
indexed_graph.node_id(input_nodes.back()));
excluded_node_id = std::max(excluded_node_id, static_cast<int>(node_id));
} else if (!input_nodes.empty()) {
// node i is an input to the subgraph, find out if there is a node j
// which is an output of the subgraph and also a child of node i.
for (size_t j = i + 1; j < non_subgraph_nodes.size(); ++j) {
auto it2 = non_subgraph_node_map.find(non_subgraph_nodes[j]);
CHECK(it2 != non_subgraph_node_map.end());
// i is topologically before j, j might be a direct/indirect output node of i
CHECK_LT(indexed_graph.node_id(it1->first), indexed_graph.node_id(it2->first));
if (!it2->second.first.empty() && is_ancestor(it1->first, it2->first, *subgraph_nodes)) {
// found a loop
const auto node_id = std::max(indexed_graph.node_id(input_nodes.back()),
indexed_graph.node_id(it2->second.first.back()));
excluded_node_id = std::max(excluded_node_id, static_cast<int>(node_id));
}
}
}
}
if (excluded_node_id != -1) {
CHECK_LT(excluded_node_id, static_cast<int>(simple_nodes.size()));
CHECK_NE(excluded_node_id, static_cast<int>(snid))
<< "A cycle is found in the computational graph between nodes "
<< simple_nodes[excluded_node_id]->node->attrs.name << " and "
<< simple_nodes[snid]->node->attrs.name;
excluded_nodes->insert(simple_nodes[excluded_node_id].get());
ResetNodeLabels(g, simple_nodes, subgraph_nodes);
return false;
}
auto sim_node_cmp = [&] (const BiDirectedNode* node1, const BiDirectedNode* node2) {
return indexed_graph.node_id(node1->node) < indexed_graph.node_id(node2->node);
};
std::sort(subgraph_nodes->begin(), subgraph_nodes->end(), sim_node_cmp);
return true;
}
/*!
* \brief Finds all the nodes belonging to the same subgraph given a seed node.
* \param g the whole graph
* \subgraph_selector determines whether the visited node should be choosen or not
* \label the label of the current subgraph
* \snid node id of the seed simple node
* \simple_nodes all simple nodes in the top sorted order
* \subgraph_nodes all the nodes belonging to the same subgraph of seed node
* \return Subgraph node candidates sorted in the topological order
*/
void PreSelectSubgraphNodes(const nnvm::Graph& g, SubgraphSelectorV2Ptr subgraph_selector,
const int label, const size_t snid,
const std::vector<BiDirectedNodePtr>& simple_nodes,
std::vector<BiDirectedNode*>* subgraph_nodes) {
std::unordered_set<const BiDirectedNode*> excluded_nodes;
const size_t max_num_retry = simple_nodes.size() * simple_nodes.size();
size_t count = 0;
bool success = false;
while (!success && count < max_num_retry) {
success = LabelSubgraph(g, subgraph_selector, label, snid, simple_nodes, subgraph_nodes,
&excluded_nodes);
if (!success) {
CHECK(!excluded_nodes.empty());
std::string excluded_node_names;
for (auto node : excluded_nodes) {
excluded_node_names += node->node->attrs.name + ", ";
}
static bool verbose = dmlc::GetEnv("MXNET_SUBGRAPH_VERBOSE", false);
if (verbose) {
LOG(INFO) << "Found a cycle when BFS from node " << simple_nodes[snid]->node->attrs.name
<< ". Excluding nodes " << excluded_node_names << "and retrying";
}
subgraph_selector->Reset();
}
++count;
}
if (!success) {
LOG(INFO) << "Tried " << count << " times of finding subgraphs starting from node "
<< simple_nodes[snid]->node->attrs.name
<< " without success because a loop "
"is always found between the subgraph and some other nodes. Will treat "
"seed node "
<< simple_nodes[snid]->node->attrs.name << "as a subgraph with one node";
CHECK(subgraph_nodes->empty());
simple_nodes[snid]->label = label;
subgraph_nodes->push_back(simple_nodes[snid].get());
}
}
void SelectSubgraphNodes(nnvm::Graph* g, SubgraphSelectorV2Ptr subgraph_selector,
const std::vector<BiDirectedNodePtr>& simple_nodes,
std::vector<std::vector<BiDirectedNode*>>* subgraph_nodes,
std::vector<SubgraphSelectorV2Ptr>* subgraph_selectors,
const BiDirectedNode* node, const size_t snid, size_t* subgraph_id) {
const auto& indexed_graph = g->indexed_graph();
auto node_cmp = [&] (const BiDirectedNode* node1, const BiDirectedNode* node2) {
return indexed_graph.node_id(node1->node) < indexed_graph.node_id(node2->node);
};
if (simple_nodes[snid]->label == -1 && subgraph_selector->Select(*node)) {
// pre-select nodes that can be grouped in a subgraph
std::vector<BiDirectedNode*> preselected_nodes;
PreSelectSubgraphNodes(*g, subgraph_selector, *subgraph_id, snid, simple_nodes,
&preselected_nodes);
// filter out unqualified pre-selected nodes
std::vector<BiDirectedNode*> filtered_nodes = subgraph_selector->Filter(preselected_nodes);
// reset node labels that are not in filtered nodes
for (const auto n : preselected_nodes) {
const auto nit = std::find(filtered_nodes.begin(), filtered_nodes.end(), n);
if (nit == filtered_nodes.end()) {
n->label = -1;
}
}
if (filtered_nodes.size()) {
// make sure filtered_nodes is a subset of preselected_nodes
for (const auto n : filtered_nodes) {
const auto nit = std::find(preselected_nodes.begin(), preselected_nodes.end(), n);
CHECK(nit != preselected_nodes.end())
<< "Node " << n->node->attrs.name
<< " is not found in the pre-selected subgraph nodes."
" Please make sure that no new nodes were added in your subgraph"
" selector's Filter function";
}
// make sure nodes are sorted
std::sort(filtered_nodes.begin(), filtered_nodes.end(), node_cmp);
subgraph_nodes->push_back(filtered_nodes);
subgraph_selectors->push_back(subgraph_selector);
(*subgraph_id)++;
}
}
}
/*!
* \brief Finds subgraphs with all nodes that meet certain criteria.
* All nodes in a subgraph are marked with the same label.
*/
void FindSubgraphs(nnvm::Graph* g,
const SubgraphProperty &subg_prop,
const std::vector<BiDirectedNodePtr>& simple_nodes,
std::vector<std::vector<BiDirectedNode*>>* subgraph_nodes,
std::vector<SubgraphSelectorV2Ptr>* subgraph_selectors) {
const auto& indexed_graph = g->indexed_graph();
CHECK_EQ(indexed_graph.num_nodes(), simple_nodes.size());
size_t subgraph_id = 0;
for (size_t i = 0; i < simple_nodes.size(); ++i) {
const auto snode = simple_nodes[i];
SubgraphSelectorV2Ptr subgraph_selector = subg_prop.CreateSubgraphSelectorV2();
SelectSubgraphNodes(g, subgraph_selector, simple_nodes, subgraph_nodes, subgraph_selectors,
snode.get(), i, &subgraph_id);
}
}
/*!
* \brief Sorts entries according to their topological order.
* Note that entry ids cannot be used to sort entries.
* \param entry_top_order_map mapping from entry pointer to its topological position in the graph
* \param entries Node entries to be sorted
*/
void SortEntries(const std::unordered_map<const nnvm::NodeEntry*, size_t>& entry_top_order_map,
std::vector<nnvm::NodeEntry*>* entries) {
auto entry_cmp = [&](const nnvm::NodeEntry* e1, const nnvm::NodeEntry* e2) {
const auto it1 = entry_top_order_map.find(e1);
CHECK(it1 != entry_top_order_map.end());
const auto it2 = entry_top_order_map.find(e2);
CHECK(it2 != entry_top_order_map.end());
return it1->second < it2->second;
};
std::sort(entries->begin(), entries->end(), entry_cmp);
}
/*!
* \brief Given a subgraph, find the output entries of a subgraph.
* \param g pointer to the whole graph
* \param simple_nods vector of simple nodes in top sorted order
* \param subgraph_nodes vector of pointers of simples of a subgraph.
* \param entry_top_order_map mapping entry pointer to its top sorted position
* \param input_entries input entries of the subgraph
*/
void FindInputEntries(const nnvm::Graph& g,
const std::vector<BiDirectedNodePtr>& simple_nodes,
const std::vector<BiDirectedNode*>& subgraph_nodes,
const std::unordered_map<const nnvm::NodeEntry*, size_t>& entry_top_order_map,
std::vector<nnvm::NodeEntry*>* input_entries) {
const auto& indexed_graph = g.indexed_graph();
int label = -1;
for (auto subgraph_node : subgraph_nodes) {
if (label == -1) {
label = subgraph_node->label;
} else {
CHECK_EQ(subgraph_node->label, label);
}
auto& inputs = subgraph_node->node->inputs;
for (auto &e : inputs) {
if (indexed_graph.exist(e.node.get())) {
// e's source node is not a subgraph node
const auto nid = indexed_graph.node_id(e.node.get());
// this is a node not belonging to the subgraph
if (simple_nodes[nid]->label != label) {
input_entries->push_back(&e);
}
} else {
// e's source node is a subgraph node.
// In this case, two subgraphs are adjacent.
input_entries->push_back(&e);
}
}
}
SortEntries(entry_top_order_map, input_entries);
}
/*!
* \brief Given a subgraph, find the output entries of a subgraph.
* \param g pointer to the whole graph
* \param simple_nods vector of simple nodes in top sorted order
* \param subgraph_nodes vector of pointers of simples of a subgraph.
* \param entry_top_order_map mapping entry pointer to its top sorted position
* \param output_entries output entries of the subgraph
*/
void FindOutputEntries(nnvm::Graph* g,
const std::vector<BiDirectedNodePtr>& simple_nodes,
const std::vector<BiDirectedNode*>& subgraph_nodes,
const std::unordered_map<const nnvm::NodeEntry*, size_t>&
entry_top_order_map,
std::vector<nnvm::NodeEntry*>* output_entries) {
if (subgraph_nodes.empty()) return;
const auto& indexed_graph = g->indexed_graph();
int label = -1;
for (auto subgraph_node : subgraph_nodes) {
if (label == -1) {
label = subgraph_node->label;
} else {
CHECK_EQ(subgraph_node->label, label);
}
for (auto &output_node : subgraph_node->outputs) {
if (indexed_graph.exist(output_node.first)) {
// if the output node is a normal graph node (not a subgraph node)
const auto nid = indexed_graph.node_id(output_node.first);
// this is a node not belonging to the current subgraph
if (simple_nodes[nid]->label != label) {
for (auto idx : output_node.second) {
auto& e = simple_nodes[nid]->node->inputs[idx];
output_entries->push_back(&e);
}
}
} else {
// if the output node is a subgraph node
// two graphs are adjacent
for (auto idx : output_node.second) {
output_entries->push_back(&(output_node.first->inputs[idx]));
}
}
}
}
// Check if current subgraph contains a node which is the last node
// of the whole graph. If so, save its corresponding entry as well.
for (auto &entry : g->outputs) {
// The entry might has been updated as an output of
// a subgraph node. In this case, no need
// to check its source for the current subgraph. Otherwise,
// do the following.
if (indexed_graph.exist(entry.node.get())) {
const auto nid = indexed_graph.node_id(entry.node.get());
if (simple_nodes[nid]->label == label) {
output_entries->push_back(&entry);
}
}
}
SortEntries(entry_top_order_map, output_entries);
}
/*!
* \brief Given a computation graph and a set of input node entries, this function cuts
* the node entries and creates new variable nodes as the input nodes of the
* subgraph. It returns the nodes that connect to the subgraph directly and
* the names of the new variable nodes.
*/
void CutGraphInputs(const std::vector<nnvm::NodeEntry*> &input_entries,
std::vector<nnvm::NodeEntry> *orig_entries,
const bool skip_var = false) {
orig_entries->resize(input_entries.size());
// map for creating unique var nodes for deduplicating entries from the same node
std::unordered_map<std::string, int> name_count_map;
for (size_t i = 0; i < input_entries.size(); ++i) {
nnvm::NodeEntry *e = input_entries[i];
// If the node is a variable itself, we may want to skip the node.
if (e->node->is_variable() && skip_var) {
continue;
}
orig_entries->at(i) = *e;
nnvm::Symbol sym;
sym.outputs.push_back(*e);
const auto output_names = sym.ListOutputNames();
CHECK_EQ(output_names.size(), 1U);
const std::string& var_name = output_names[0];
auto it = name_count_map.find(var_name);
if (name_count_map.end() == it) {
name_count_map.emplace(var_name, 0);
} else {
++(it->second);
}
nnvm::NodePtr n = nnvm::CreateVariableNode(var_name + std::to_string(name_count_map[var_name]));
*e = nnvm::NodeEntry{n, 0, 0};
}
}
/*!
* \brief Replace a set of nodes belonging to the same subgraph with a subgrpah node
* and keep the subgraph in the subgraph node.
*/
void CreateSubgraphNode(nnvm::Graph* g,
const std::vector<BiDirectedNodePtr>& simple_nodes,
const std::vector<BiDirectedNode*>& subgraph_nodes,
const SubgraphSelectorV2Ptr& subgraph_selector,
const size_t subgraph_id,
std::unordered_map<const nnvm::NodeEntry*, size_t>* entry_top_order_map) {
#if DEBUG_SUBGRAPH
LOG(INFO) << "Searching for input entries...";
#endif
std::vector<nnvm::NodeEntry*> input_entries;
FindInputEntries(*g, simple_nodes, subgraph_nodes, *entry_top_order_map, &input_entries);
std::vector<nnvm::NodeEntry> orig_input_entries;
CutGraphInputs(input_entries, &orig_input_entries, false);
#if DEBUG_SUBGRAPH
PrintNodeEntries(input_entries);
LOG(INFO) << "Searching for output entries...";
#endif
std::vector<nnvm::NodeEntry*> output_entries;
FindOutputEntries(g, simple_nodes, subgraph_nodes, *entry_top_order_map, &output_entries);
// Create a subgraph for the subgraph node
nnvm::Symbol sym;
sym.outputs.resize(output_entries.size());
for (size_t i = 0; i < output_entries.size(); ++i) {
sym.outputs[i] = *output_entries[i];
}
const SubgraphPropertyPtr& subg_prop = g->GetAttr<SubgraphPropertyPtr>("subgraph_property");
nnvm::NodePtr n = subg_prop->CreateSubgraphNode(sym, subgraph_selector, subgraph_id);
// Connect the external nodes to the subgraph node.
subg_prop->ConnectSubgraphOutputs(n, &output_entries);
subg_prop->ConnectSubgraphInputs(n, &input_entries, &orig_input_entries);
const auto& indexed_graph = g->indexed_graph();
for (size_t i = 0; i < n->inputs.size(); ++i) {
auto& e = n->inputs[i];
// update entry_top_order_map with newly created orig_input_entries
auto it = entry_top_order_map->find(input_entries[i]);
CHECK(it != entry_top_order_map->end());
entry_top_order_map->emplace(&e, it->second);
// update input entries' source simple nodes' outputs map
nnvm::Node* node = e.node.get();
if (indexed_graph.exist(node)) {
const auto nid = indexed_graph.node_id(node);
BiDirectedNode* sn = simple_nodes[nid].get();
for (BiDirectedNode* dest_node : subgraph_nodes) {
sn->outputs.erase(dest_node->node);
}
sn->outputs[n.get()].push_back(i);
}
}
#if DEBUG_SUBGRAPH
PrintNodeEntries(output_entries);
#endif
}
/*!
* \brief Adjust a set of nodes belonging to the same subgraph. No new node is created, but
* adjust selected nodes' attributes.
* This can be used to implement peephole optimization. For example, adjust calibration information
* of quantized nodes.
*/
void AdjustSubgraphNode(nnvm::Graph* g,
const std::vector<BiDirectedNode*>& subgraph_nodes,
const SubgraphSelectorV2Ptr& subgraph_selector,
const size_t subgraph_id) {
std::vector<nnvm::Node*> node_list;
for (auto node : subgraph_nodes) {
node_list.push_back(node->node);
}
const SubgraphPropertyPtr& subg_prop = g->GetAttr<SubgraphPropertyPtr>("subgraph_property");
subg_prop->AdjustSubgraphNode(node_list, subgraph_selector, subgraph_id);
}
} // namespace sg
/*!
* \brief Sort entries of all the nodes' inputs vectors in the topological order.
* This is going to be used to sort input/output entries of subgraphs to keep
* the topological order unchanged.
*/
void TopSortEntries(const nnvm::Graph& g,
std::unordered_map<const nnvm::NodeEntry*, size_t>* entry_top_order_map) {
CHECK(entry_top_order_map != nullptr);
std::unordered_set<const nnvm::Node*> visited;
// tuple: (graph node, index of node's inputs, node entry as the output of the graph node)
std::stack<std::tuple<nnvm::Node*, size_t, const nnvm::NodeEntry*>> s;
auto in_degree = [] (const nnvm::Node* node)->size_t {
if (!node) {
return 0;
}
CHECK_EQ(node->control_deps.size(), 0U);
return node->inputs.size();
};
for (auto& e : g.outputs) {
nnvm::Node* node = e.node.get();
if (visited.count(node) == 0U) {
s.emplace(node, 0U, &e);
visited.insert(node);
} else {
// The entry's source node has been visited before.
// Marking the order for it.
entry_top_order_map->emplace(&e, entry_top_order_map->size());
}
while (!s.empty()) {
auto& top = s.top();
if (std::get<1>(top) == in_degree(std::get<0>(top))) {
// The node's inputs has been exhausted.
entry_top_order_map->emplace(std::get<2>(top), entry_top_order_map->size());
s.pop();
} else {
// The node still has input entries not visited.
CHECK_LT(std::get<1>(top), std::get<0>(top)->inputs.size());
auto& entry = std::get<0>(top)->inputs[std::get<1>(top)++];
nnvm::Node* input_node = entry.node.get();
if (visited.count(input_node) == 0U) {
// The entry's source node has not been visited.
// Push the entry to the stack for marking order later.
s.emplace(input_node, 0U, &entry);
visited.insert(input_node);
} else {
// The entry's source node has been visited before.
// Marking the order for it.
entry_top_order_map->emplace(&entry, entry_top_order_map->size());
}
}
}
}
}
nnvm::Graph BuildSubgraph(nnvm::Graph&& g) {
static bool verbose = dmlc::GetEnv("MXNET_SUBGRAPH_VERBOSE", false);
if (!g.HasAttr("subgraph_property")) { // treat the whole graph as a subgraph
if (verbose) {
LOG(INFO) << "The graph has no attribute of subgraph_property attached. "
"The original graph is returned.";
}
return g;
}
using namespace sg;
const SubgraphPropertyPtr& subg_prop = g.GetAttr<SubgraphPropertyPtr>("subgraph_property");
if (verbose) {
const std::string& prop_name = subg_prop->HasAttr("property_name")
? subg_prop->GetAttr<std::string>("property_name")
: "partition graph";
LOG(INFO) << "start to execute " << prop_name << ".";
}
// top sort NodeEntry of all the nodes' inputs
std::unordered_map<const nnvm::NodeEntry*, size_t> entry_top_order_map;
TopSortEntries(g, &entry_top_order_map);
// Create double directional graph for ease of finding subgraphs
std::vector<BiDirectedNodePtr> simple_nodes;
CreateSimpleGraph(g, &simple_nodes);
std::vector<std::vector<BiDirectedNode*>> subgraph_nodes;
std::vector<SubgraphSelectorV2Ptr> subgraph_selectors;
FindSubgraphs(&g, *subg_prop, simple_nodes, &subgraph_nodes, &subgraph_selectors);
CHECK_EQ(subgraph_nodes.size(), subgraph_selectors.size());
for (size_t i = 0; i < subgraph_nodes.size(); ++i) {
#if DEBUG_SUBGRAPH
std::set<BiDirectedNode*> simple_node_set(subgraph_nodes[i].begin(), subgraph_nodes[i].end());
CHECK_EQ(simple_node_set.size(), subgraph_nodes[i].size());
PrintSubgraph(subgraph_nodes[i]);
#endif
auto ptype = subg_prop->GetPropertyType();
if (ptype == SubgraphProperty::SgPropertyType::kCreate) {
CreateSubgraphNode(&g, simple_nodes, subgraph_nodes[i], subgraph_selectors[i], i,
&entry_top_order_map);
} else {
CHECK_EQ(ptype, SubgraphProperty::SgPropertyType::kAdjust);
AdjustSubgraphNode(&g, subgraph_nodes[i], subgraph_selectors[i], i);
}
}
return g;
}
NNVM_REGISTER_PASS(BuildSubgraph)
.describe("Apply a subgraph pass according to the user defined rules "
"in a derived class of SubgraphProperty")
.set_body(BuildSubgraph)
.set_change_graph(true);
} // namespace op
} // namespace mxnet