This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
/
test_large_array.py
1755 lines (1541 loc) · 66.1 KB
/
test_large_array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
import sys
import tempfile
import math
import numpy as np
import mxnet as mx
from mxnet.test_utils import rand_ndarray, assert_almost_equal, rand_coord_2d, default_device, check_symbolic_forward, create_2d_tensor
from mxnet.util import TemporaryDirectory
from mxnet import gluon, nd
from common import with_seed
import pytest
# dimension constants
MEDIUM_X = 10000
VLARGE_X = 4300000000
LARGE_X = 100000000
SMALL_X = 100
SMALL_Y = 50
LARGE_SIZE = LARGE_X * SMALL_Y
LARGE_TENSOR_SHAPE = 2**32
RNN_LARGE_TENSOR = 2**28
@pytest.mark.timeout(0)
def test_nn():
def check_gluon_embedding():
m = gluon.nn.Embedding(SMALL_Y, MEDIUM_X)
m.initialize()
a = nd.zeros((MEDIUM_X, SMALL_Y))
b = m(a)
assert b.shape == (MEDIUM_X, SMALL_Y, MEDIUM_X)
assert b.asnumpy().size == LARGE_SIZE
def check_fully_connected():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
b = nd.ones(shape=(SMALL_Y, SMALL_Y))
c = nd.ones(shape=(b.shape[0],))
# w/o bias
res = nd.FullyConnected(a, b, num_hidden=b.shape[0], no_bias=True)
assert np.sum(res[-1].asnumpy() == a.shape[1]) == b.shape[0]
# w/ bias
res = nd.FullyConnected(a, b, c, num_hidden=b.shape[0], no_bias=False)
assert np.sum(res[-1].asnumpy() == a.shape[1] + 1) == b.shape[0]
def check_dense():
data = mx.nd.ones(shape=(50*1000*1000, 100))
linear = gluon.nn.Dense(100)
linear.initialize()
res = linear(data)
assert res.shape == (50000000, 100)
def check_softmax():
input_data = mx.nd.ones((SMALL_Y, LARGE_X))
for axis in [0, 1]:
true_output = np.full((SMALL_Y, LARGE_X), (1 / input_data.shape[axis]))
output = nd.softmax(input_data, axis=axis)
assert_almost_equal(output.asnumpy(), true_output, rtol=1e-5, atol=1e-5)
def check_softmax_cross_entropy():
# dtype of input data, mxnet cross entropy set explicitly to float64
# numpy implicitly takes care of double precision
batch_size = SMALL_Y
num_labels = LARGE_X
input_data = mx.nd.ones((batch_size, num_labels), dtype="float64")
input_label = mx.nd.zeros((batch_size,), dtype="float64")
true_softmax = np.full((batch_size, num_labels), (1 / num_labels))
# use 1/batch_size when softmax axis=0
# here 1/num_labels since softmax_cross_entropy uses default axis
# by default axis=1
np_one_hot_label = np.zeros((batch_size, num_labels))
np_one_hot_label[:, 0] = 1
true_softmax_cross_entropy = np.sum(-np.log(true_softmax) *
np_one_hot_label)
mx_softmax_cross_entropy = mx.nd.softmax_cross_entropy(input_data,
input_label,
dtype="float64")
assert_almost_equal(mx_softmax_cross_entropy.asnumpy(),
true_softmax_cross_entropy, rtol=1e-3, atol=1e-5)
def check_softmax_activation():
data = nd.random_normal(shape=(2**29, 2, 2, 2))
out = nd.random_normal(shape=(2**29, 2, 2, 2))
res = nd.SoftmaxActivation(data=data, out=out)
assert res.shape[0] == 536870912
assert res.shape[1] == 2
assert res.shape[2] == 2
assert res.shape[3] == 2
def np_softmax(x, axis=-1, temperature=1.0):
x = x - np.max(x, axis=axis, keepdims=True)
x = np.exp(x/temperature)
x /= np.sum(x, axis=axis, keepdims=True)
return x
@pytest.mark.skip(reason="log_softmax flaky, tracked at "
"https://github.com/apache/mxnet/issues/17397")
def check_log_softmax():
ndim = 2
shape = (SMALL_Y, LARGE_X)
axis = np.random.randint(0, ndim)
data = np.random.uniform(-2, 2, size=shape)
sym = mx.sym.log_softmax(axis=axis-ndim)
check_symbolic_forward(sym, [data], [np.log(np_softmax(data, axis=axis)+1e-20)])
# TODO: correctness of prelu (currently flaky)
def check_leaky_relu():
a = -1*mx.nd.ones((LARGE_X, SMALL_Y))
def check_leaky():
res = mx.nd.LeakyReLU(a, act_type="leaky", slope=0.3)
assert_almost_equal(res[-1][-1].asnumpy(), 0.3*a[-1][-1].asnumpy(), atol=1e-3, rtol=1e-3)
def check_elu():
res = mx.nd.LeakyReLU(a, act_type="elu", slope=0.3)
assert_almost_equal(res[-1][-1].asnumpy(), 0.3*(np.exp(a[-1][-1].asnumpy())-1), atol=1e-3, rtol=1e-3)
def check_selu():
lam = 1.0507009873554804934193349852946
alpha = 1.6732632423543772848170429916717
res = mx.nd.LeakyReLU(a, act_type="selu")
assert_almost_equal(res[-1][-1].asnumpy(), (lam * alpha * (np.exp(a[-1][-1].asnumpy())-1)), atol=1e-3, rtol=1e-3)
def check_rrelu():
lower = 0.125
upper = 0.333999991
res = mx.nd.LeakyReLU(a, act_type="rrelu")
assert_almost_equal(res[0][-1][-1].asnumpy(), (lower + upper) / 2 * a[-1][-1].asnumpy(), atol=1e-3, rtol=1e-3)
check_leaky()
check_elu()
check_selu()
check_rrelu()
def check_pooling():
a = mx.nd.ones((MEDIUM_X, 200, SMALL_Y, SMALL_Y))
def check_avg_pooling():
res = mx.nd.Pooling(a, kernel=(5, 5), pool_type='avg')
assert_almost_equal(res[-1][-1][-1][-1].asnumpy(), 1.0000001, atol=1e-3, rtol=1e-3)
assert res.shape[-1] == SMALL_Y - 5 + 1
def check_max_pooling():
res = mx.nd.Pooling(a, kernel=(5, 5), pool_type='max')
assert_almost_equal(res[-1][-1][-1][-1].asnumpy(), 1., atol=1e-3, rtol=1e-3)
assert res.shape[-1] == SMALL_Y - 5 + 1
def check_sum_pooling():
res = mx.nd.Pooling(a, kernel=(5, 5), pool_type='sum')
assert_almost_equal(res[-1][-1][-1][-1].asnumpy(), 25, atol=1e-3, rtol=1e-3)
assert res.shape[-1] == SMALL_Y - 5 + 1
def check_lp_pooling():
res = mx.nd.Pooling(a, kernel=(5, 5), pool_type='lp', p_value=2)
assert_almost_equal(res[-1][-1][-1][-1].asnumpy(), 5., atol=1e-3, rtol=1e-3)
assert res.shape[-1] == SMALL_Y - 5 + 1
res = mx.nd.Pooling(a, kernel=(5, 5), pool_type='lp', p_value=1)
assert_almost_equal(res[-1][-1][-1][-1].asnumpy(), 25., atol=1e-3, rtol=1e-3)
assert res.shape[-1] == SMALL_Y - 5 + 1
check_avg_pooling()
check_max_pooling()
check_sum_pooling()
check_lp_pooling()
def check_layer_norm():
dtype = np.float32
forward_check_eps = 1E-3
axis = 1
eps = 1E-5
in_shape = (LARGE_X, SMALL_Y)
ctx = mx.cpu()
def npy_layer_norm(data, gamma, beta, axis=1, eps=1E-5):
if axis < 0:
axis += data.ndim
broadcast_shape = [1 for _ in range(data.ndim)]
broadcast_shape[axis] = data.shape[axis]
mean = data.mean(axis=axis, keepdims=True).astype(dtype)
var = data.var(axis=axis, keepdims=True).astype(dtype)
std = np.sqrt(var + dtype(eps)).astype(dtype)
out = np.reshape(gamma, broadcast_shape) * (data - mean) / std + \
np.reshape(beta, broadcast_shape)
return out
data = np.random.normal(0, 1, in_shape).astype(dtype)
gamma = np.random.normal(0, 1, (in_shape[axis],)).astype(dtype)
beta = np.random.normal(0, 1, (in_shape[axis],)).astype(dtype)
data_s = mx.symbol.Variable('data')
gamma_s = mx.symbol.Variable('gamma')
beta_s = mx.symbol.Variable('beta')
out_s = mx.symbol.LayerNorm(data=data_s, gamma=gamma_s, beta=beta_s,
axis=axis, eps=eps)
exe = out_s._simple_bind(ctx, data=in_shape)
exe.arg_dict['data'][:] = data
exe.arg_dict['gamma'][:] = gamma
exe.arg_dict['beta'][:] = beta
out_nd = exe.forward()[0]
out = npy_layer_norm(data, gamma, beta, axis, eps)
assert_almost_equal(out, out_nd.asnumpy(), forward_check_eps,
forward_check_eps)
# TODO: correctness of dropout
# currently only test for dropout to work
# since testing for correctness involves flakiness issue #14288
def check_dropout():
shape = (LARGE_X, SMALL_Y)
x = mx.sym.var('data')
y = mx.sym.Dropout(x, p=1, cudnn_off=True)
exe = y._simple_bind(ctx=default_device(), data=shape)
exe.arg_arrays[0][:] = 1
out = exe.forward(is_train=True)
nd.waitall()
assert out[0].shape == shape
def check_activation():
x = mx.nd.ones((LARGE_X, SMALL_Y))
check_x = -2
x[-1, -1] = check_x
# Hyperbolic tangent (tanh)
# y = (exp(x)-exp(-x))/(exp(x)+exp(-x))
y = mx.nd.Activation(x, act_type="tanh")
tanh_x = ((np.exp(check_x)-np.exp(-check_x))/(np.exp(check_x)+np.exp(-check_x)))
assert y[-1][-1] == np.float32(tanh_x)
# Recitified Linear Unit (relu)
# y = max(x,0)
y = mx.nd.Activation(x, act_type="relu")
assert y[-1][-1] == 0
# Sigmoid
# y = x/(1+abs(x))
y = mx.nd.Activation(x, act_type="sigmoid")
sigmoid_x = (1/(1+math.exp(-check_x)))
assert_almost_equal(y[-1][-1].asnumpy(), np.float32(sigmoid_x), atol=1e-3, rtol=1e-3)
# Soft Sign
# y = 1/(1+exp(-x))
y = mx.nd.Activation(x, act_type="softsign")
softsign_x = (check_x/(1+abs(check_x)))
assert y[-1][-1] == np.float32(softsign_x)
# TODO: correctness of batchnorm
# in future, we could test if mean, var of output
# matches target output's mean, var
def check_batchnorm():
def get_np_mean_var(data, running_mean, running_var, eps, use_global_status=True):
if not use_global_status:
# train mode, calculate the real mean and var
mean = np.mean(data, axis=(0, 2, 3))
mean_broad = np.expand_dims(mean, axis=0)
mean_broad = np.expand_dims(mean_broad, axis=2)
mean_broad = np.expand_dims(mean_broad, axis=3)
mean_broad = np.broadcast_to(mean_broad, data.shape)
var = np.square(data - mean_broad)
var = np.mean(var, axis=(0, 2, 3))
else:
# inference mode, use running_mean and running_var instead
mean = np.full((data.shape[1],), running_mean)
var = np.full((data.shape[1],), running_var)
# calculate the inverse of standard variance
invstdvar = 1. / np.sqrt(var + eps)
return mean, invstdvar
# Here use 4D input to cover dnnl BN and non-dnnl BN
shape = (1, 2, LARGE_X, SMALL_Y)
axis = 1 # default
eps = 1e-3
nch = shape[axis]
data = mx.nd.ones(shape=shape)
bn_gamma = mx.nd.random.uniform(shape=(nch,))
bn_beta = mx.nd.random.uniform(shape=(nch,))
bn_running_mean = mx.nd.zeros(nch)
bn_running_var = mx.nd.ones(nch)
output = mx.nd.BatchNorm(data, bn_gamma, bn_beta,
bn_running_mean, bn_running_var, output_mean_var=True)
assert output[0].shape == shape
mean, invstdvar = output[1], output[2]
np_mean, np_invstdvar = get_np_mean_var(data.asnumpy(), bn_running_mean.asnumpy(), bn_running_var.asnumpy(),
eps, use_global_status=True)
assert_almost_equal(mean.asnumpy(), np_mean)
assert_almost_equal(invstdvar.asnumpy(), np_invstdvar)
def check_relu():
def frelu(x):
return np.maximum(x, 0.0)
def frelu_grad(x):
return 1.0 * (x > 0.0)
shape = (SMALL_Y, LARGE_X)
x = mx.symbol.Variable("x")
y = mx.sym.relu(x)
xa = np.random.uniform(low=-1.0, high=1.0, size=shape)
eps = 1e-4
xa[abs(xa) < eps] = 1.0
ya = frelu(xa)
ga = frelu_grad(xa)
check_symbolic_forward(y, [xa], [ya])
def check_sigmoid():
def fsigmoid(a):
return np.divide(1.0, (1.0 + np.exp(-a)))
shape = (SMALL_Y, LARGE_X)
x = mx.symbol.Variable("x")
y = mx.sym.sigmoid(x)
xa = np.random.uniform(low=-1.0, high=1.0, size=shape)
ya = fsigmoid(xa)
check_symbolic_forward(y, [xa], [ya])
def check_l2_normalization():
x = nd.ones((2, LARGE_X*2))
x[0] = 3
x[1] = 4
# Channel Mode
z = x.reshape(1, 2, LARGE_X*2)
y = nd.L2Normalization(z, mode='channel')
assert y[0][0][0] == 0.6
assert y[0][0][-1] == 0.6
assert y[0][1][0] == 0.8
assert y[0][1][-1] == 0.8
# Instance Mode
z = x.T
y = nd.L2Normalization(z, mode='instance')
assert y[0][0] == 0.6
assert y[0][1] == 0.8
assert y[-1][0] == 0.6
assert y[-1][1] == 0.8
# Spatial Mode
z = z.reshape(1, 200000000, 2)
y = nd.L2Normalization(z, mode='spatial')
assert y[0][0][0] == 0.6
assert y[0][0][1] == 0.8
assert y[0][-1][0] == 0.6
assert y[0][-1][1] == 0.8
def check_instance_norm():
dtype = np.float32
forward_check_eps = 1E-3
axis = -1
eps = 1E-5
in_shape = (LARGE_X, 1, SMALL_Y)
ctx = mx.cpu()
# Implementation of instance normalization using numpy
def npy_instance_norm(data, gamma, beta, axis, eps=1E-5):
if axis < 0:
axis += data.ndim
broadcast_shape = [1 for _ in range(data.ndim)]
broadcast_shape[axis] = data.shape[axis]
mean = data.mean(axis=axis, keepdims=True).astype(dtype)
var = data.var(axis=axis, keepdims=True).astype(dtype)
std = np.sqrt(var + dtype(eps)).astype(dtype)
out = gamma * (data - mean) / std + \
beta
return out
data = np.random.normal(0, 1, in_shape).astype(dtype)
gamma = np.random.normal(0, 1, (1,)).astype(dtype)
beta = np.random.normal(0, 1, (1,)).astype(dtype)
data_s = mx.symbol.Variable('data')
gamma_s = mx.symbol.Variable('gamma')
beta_s = mx.symbol.Variable('beta')
out_s = mx.symbol.InstanceNorm(data=data_s, gamma=gamma_s, beta=beta_s,
eps=eps)
exe = out_s._simple_bind(ctx, data=in_shape)
exe.arg_dict['data'][:] = data
exe.arg_dict['gamma'][:] = gamma
exe.arg_dict['beta'][:] = beta
out_nd = exe.forward()[0]
# Calls implementation of instance norm in numpy and compares the output
out = npy_instance_norm(data, gamma, beta, axis, eps)
assert_almost_equal(out, out_nd.asnumpy(), forward_check_eps,
forward_check_eps)
def check_col2im():
data = nd.random_normal(shape=(1, 2**30, 4))
output_size = (2, 2, 1)
kernel = (1, 1, 1)
res = nd.col2im(data=data, output_size=output_size, kernel=kernel)
assert res.shape[0] == 1
assert res.shape[1] == 1073741824
assert res.shape[2] == 2
assert res.shape[3] == 2
assert res.shape[4] == 1
def check_embedding():
data = nd.random_normal(shape=(LARGE_TENSOR_SHAPE, 1))
weight = nd.random_normal(shape=(LARGE_TENSOR_SHAPE, 1))
input_dim = LARGE_TENSOR_SHAPE
output_dim = 1
out = nd.Embedding(data=data, weight=weight, input_dim=input_dim, output_dim=output_dim)
assert out.shape[0] == LARGE_TENSOR_SHAPE
assert out.shape[1] == 1
def check_spatial_transformer():
data = nd.random_normal(shape=(2, 2**29, 1, 6))
loc = nd.random_normal(shape=(2, 6))
transform_type = 'affine'
sampler_type = 'bilinear'
target_shape = (2, 6)
res = nd.SpatialTransformer(data=data, loc=loc, transform_type=transform_type,
sampler_type=sampler_type, target_shape=target_shape)
assert res.shape[0] == 2
assert res.shape[1] == 536870912
assert res.shape[2] == 2
assert res.shape[3] == 6
def check_ravel():
data = nd.random_normal(shape=(2, LARGE_TENSOR_SHAPE))
shape = (2, 10)
out = nd.ravel_multi_index(data=data, shape=shape)
assert out.shape[0] == LARGE_TENSOR_SHAPE
def check_cumsum():
a = nd.ones((LARGE_X, SMALL_Y))
axis = 1
res = nd.cumsum(a=a, axis=axis)
assert res.shape[0] == LARGE_X
assert res.shape[1] == SMALL_Y
assert res[0][SMALL_Y - 1] == 50.
def check_multi_lars():
lrs = nd.random_normal(shape=(LARGE_TENSOR_SHAPE + 1, 1))
weights_sum_sq = nd.random_normal(shape=(LARGE_TENSOR_SHAPE + 1, 1))
grads_sum_sq = nd.random_normal(shape=(LARGE_TENSOR_SHAPE + 1, 1))
wds = nd.random_normal(shape=(LARGE_TENSOR_SHAPE + 1, 1))
eta = .1
eps = .9
out = nd.multi_lars(lrs=lrs, weights_sum_sq=weights_sum_sq, grads_sum_sq=grads_sum_sq,
wds=wds, eta=eta, eps=eps)
assert out.shape[0] == LARGE_TENSOR_SHAPE + 1
assert out.shape[1] == 1
# Trigger lazy evaluation of the output NDArray and ensure that it has been filled
assert type(out[0, 0].asscalar()).__name__ == 'float32'
def check_rnn():
data = nd.random_normal(shape=(RNN_LARGE_TENSOR, 4, 4))
parameters_relu_tanh = nd.random_normal(shape=(7,))
parameters_lstm = nd.random_normal(shape=(28,))
parameters_gru = nd.random_normal(shape=(21,))
state = nd.random_normal(shape=(1, 4, 1))
state_cell = nd.random_normal(shape=(1, 4, 1))
mode_relu = 'rnn_relu'
mode_tanh = 'rnn_tanh'
mode_lstm = 'lstm'
mode_gru = 'gru'
state_size = 1
num_layers = 1
out_relu = nd.RNN(data=data, parameters=parameters_relu_tanh, state=state, mode=mode_relu,
state_size=state_size, num_layers=num_layers)
out_tanh = nd.RNN(data=data, parameters=parameters_relu_tanh, state=state, mode=mode_tanh,
state_size=state_size, num_layers=num_layers)
out_lstm = nd.RNN(data=data, parameters=parameters_lstm, state=state, mode=mode_lstm,
state_cell=state_cell, state_size=state_size, num_layers=num_layers)
out_gru = nd.RNN(data=data, parameters=parameters_gru, state=state, mode=mode_gru,
state_size=state_size, num_layers=num_layers)
for out in [out_relu, out_tanh, out_lstm, out_gru]:
assert out.shape[0] == RNN_LARGE_TENSOR
assert out.shape[1] == 4
assert out.shape[2] == 1
assert type(out[0, 0, 0].asscalar()).__name__ == 'float32'
check_gluon_embedding()
check_fully_connected()
check_dense()
check_softmax()
check_softmax_cross_entropy()
check_softmax_activation()
check_log_softmax()
check_leaky_relu()
check_pooling()
check_layer_norm()
check_dropout()
check_activation()
check_batchnorm()
check_relu()
check_sigmoid()
check_l2_normalization()
check_instance_norm()
check_col2im()
check_embedding()
check_spatial_transformer()
check_ravel()
check_cumsum()
check_multi_lars()
check_rnn()
@pytest.mark.timeout(0)
def test_tensor():
def check_ndarray_zeros():
a = nd.zeros(shape=(LARGE_X, SMALL_Y))
assert a[-1][0] == 0
assert a.shape == (LARGE_X, SMALL_Y)
assert a.size == LARGE_SIZE
def check_ndarray_ones():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
assert a[-1][0] == 1
assert nd.sum(a).asnumpy() == LARGE_SIZE
@with_seed()
def check_ndarray_random_uniform():
a = nd.random.uniform(shape=(LARGE_X, SMALL_Y))
assert a[-1][0] != 0
@pytest.mark.skip(reason="Randint flaky, tracked at "
"https://github.com/apache/mxnet/issues/16172")
@with_seed()
def check_ndarray_random_randint():
a = nd.random.randint(100, 10000, shape=(LARGE_X, SMALL_Y))
assert a.shape == (LARGE_X, SMALL_Y)
# check if randint can generate value greater than 2**32 (large)
low_large_value = 2**32
high_large_value = 2**34
a = nd.random.randint(low_large_value, high_large_value, dtype=np.int64)
low = mx.nd.array([low_large_value], dtype='int64')
high = mx.nd.array([high_large_value], dtype='int64')
assert a >= low and a < high
assert a[-1][0].dtype == np.int64
@with_seed()
def check_ndarray_random_exponential():
scale_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_X))
a = nd.random.exponential(scale=scale_array, shape=(SMALL_X, SMALL_Y))
assert a[-1][0][0][0] >= 0
assert a.shape == (MEDIUM_X, SMALL_X, SMALL_X, SMALL_Y)
@with_seed()
def check_ndarray_random_gamma():
alpha_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_X))
beta_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_X))
a = nd.random.gamma(alpha=alpha_array, beta=beta_array,
shape=(SMALL_X, SMALL_Y))
assert a[-1][0][0][0] >= 0
assert a.shape == (MEDIUM_X, SMALL_X, SMALL_X, SMALL_Y)
@with_seed()
def check_ndarray_random_multinomial():
# test 1 shape dimension
probs = nd.random.uniform(shape=(LARGE_X, SMALL_Y))
a = nd.random.multinomial(probs)
assert a[-1] >= 0
assert a.shape == (LARGE_X,)
# test for NDArray multi-dimension shape
a = nd.random.multinomial(probs, shape=(2, SMALL_Y))
assert a[-1][0][0] >= 0
assert a.shape == (LARGE_X, 2, SMALL_Y)
# test log_likelihood output shape
a = nd.random.multinomial(probs, shape=(2, SMALL_Y), get_prob=True)
assert a[0][0][0][0] >= 0
assert a[0].shape == (LARGE_X, 2, SMALL_Y) and a[0].shape == a[1].shape
@with_seed()
def check_ndarray_random_generalized_negative_binomial():
alpha_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_X))
mu_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_X))
a = nd.random.generalized_negative_binomial(mu=mu_array, alpha=alpha_array,
shape=(SMALL_X, SMALL_Y))
assert a[-1][0][0][0] >= 0
assert a.shape == (MEDIUM_X, SMALL_X, SMALL_X, SMALL_Y)
@with_seed()
def check_ndarray_random_negative_binomial():
k_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_X))
p_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_X))
a = nd.random.negative_binomial(k=k_array, p=p_array,
shape=(SMALL_X, SMALL_Y))
assert a[-1][0][0][0] >= 0
assert a.shape == (MEDIUM_X, SMALL_X, SMALL_X, SMALL_Y)
@with_seed()
def check_ndarray_random_normal():
scale_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_X))
loc_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_X))
a = nd.random.normal(loc=loc_array, scale=scale_array,
shape=(SMALL_X, SMALL_Y))
assert a.shape == (MEDIUM_X, SMALL_X, SMALL_X, SMALL_Y)
@with_seed()
def check_ndarray_random_poisson():
lambda_array = nd.random.uniform(shape=(MEDIUM_X, SMALL_X))
a = nd.random.poisson(lam=lambda_array, shape=(SMALL_X, SMALL_Y))
assert a[-1][0][0][0] >= 0
assert a.shape == (MEDIUM_X, SMALL_X, SMALL_X, SMALL_Y)
@with_seed()
def check_ndarray_random_randn():
a = nd.random.randn(LARGE_X, SMALL_Y)
assert a.shape == (LARGE_X, SMALL_Y)
# TODO: Once PR #15772 for randn ndarray dtype for loc,scale param merged
# Add check for (x,y,m,n) where x,y shape of loc,scale and m,n input shape
@with_seed()
def check_ndarray_random_shuffle():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
a[-1] = 3 # assign 3 to entire last row
a = nd.random.shuffle(a)
# slice first column from shuffled array
# pass LARGE_X values to numpy instead of LARGE_X*SMALL_Y
# could have assigned to last column (so as to pass SMALL_Y)
# but shuffle operation is performed along first axis
unique_a = np.unique(a[:, 0].asnumpy())
assert len(unique_a) == 2 # only 2 unique values
assert unique_a[0] == 1 # first unique value is 1
assert unique_a[1] == 3 # second unique value is 3
assert a.shape == (LARGE_X, SMALL_Y)
def check_ndarray_empty():
a = nd.empty((LARGE_X, SMALL_Y))
assert a.shape == (LARGE_X, SMALL_Y)
def check_zeros_like():
a = nd.array(np.ones((SMALL_Y, LARGE_X)))
b = nd.zeros_like(a)
assert b[-1][-1] == 0
assert b.shape == a.shape
def check_ones_like():
a = nd.array(np.zeros((SMALL_Y, LARGE_X)))
b = nd.ones_like(a)
assert b[-1][-1] == 1
assert b.shape == a.shape
def check_broadcast():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
b = nd.arange(0, LARGE_X).reshape(LARGE_X, 1)
res = nd.broadcast_to(b, shape=(b.shape[0], SMALL_Y))
assert np.sum(res[-1].asnumpy() == LARGE_X) == res.shape[1]
res = mx.nd.broadcast_like(b, a)
assert np.sum(res[-1].asnumpy() == LARGE_X) == a.shape[1]
def check_clip():
a = nd.arange(0, LARGE_X * SMALL_Y).reshape(LARGE_X, SMALL_Y)
res = nd.clip(a, a_min=100, a_max=1000)
assert np.sum(res[-1].asnumpy() == 1000) == a.shape[1]
def check_split():
a = nd.arange(0, LARGE_X * SMALL_Y).reshape(LARGE_X, SMALL_Y)
outs = nd.split(a, num_outputs=SMALL_Y, axis=1)
result = sum(1 for i, v in enumerate(outs) if i == v[0].asnumpy())
assert result == a.shape[1]
def check_tile():
a = nd.arange(0, LARGE_X).reshape(LARGE_X, 1)
b = nd.tile(a, reps=(1, SMALL_Y))
assert np.sum(b[-1].asnumpy() == LARGE_X) == b.shape[1]
def check_take():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
idx = nd.arange(LARGE_X - 1000, LARGE_X)
res = nd.take(a, idx)
assert np.sum(res[-1].asnumpy() == 1) == res.shape[1]
def check_slice():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
res = nd.slice(a, begin=(LARGE_X-1000, 1), end=(LARGE_X, SMALL_Y))
assert np.sum(res[-1].asnumpy() == 1) == res.shape[1]
def check_slice_assign():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
a[LARGE_X-1:LARGE_X] = 1000
assert np.sum(a[-1].asnumpy() == 1000) == a.shape[1]
def check_slice_like():
a = create_2d_tensor(rows=SMALL_Y, columns=LARGE_X)
b = nd.array(np.ones((SMALL_Y//2, LARGE_X//2)))
c = nd.slice_like(a, b)
d = nd.slice_like(a, b, axes=(0))
e = nd.slice_like(a, b, axes=(-1))
assert c.shape == b.shape
assert d.shape[0] == b.shape[0]
assert e.shape[-1] == b.shape[-1]
assert c[0][-1] == 0
assert d[-1][0] == (SMALL_Y//2-1)
assert e[-1][-1] == (SMALL_Y-1)
def check_slice_axis():
a = create_2d_tensor(rows=SMALL_Y, columns=LARGE_X)
c = nd.slice_axis(a, axis=0, begin=0, end=SMALL_Y//2)
d = nd.slice_axis(a, axis=1, begin=0, end=LARGE_X//2)
assert c.shape[0] == a.shape[0]//2
assert d.shape[1] == a.shape[1]//2
assert c[-1][0] == (SMALL_Y//2-1)
assert d[-1][-1] == (SMALL_Y-1)
def check_expand_dims():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
res = nd.expand_dims(a, axis=1)
res.wait_to_read()
assert a[0][0][0] == 1
assert res.shape == (a.shape[0], 1, a.shape[1])
def check_squeeze():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
data = nd.expand_dims(a, axis=1)
res = nd.squeeze(data)
assert res.shape == a.shape
def check_broadcast_div():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
b = nd.ones(shape=(LARGE_X, 1)) * 2
res = a / b
assert np.sum(res[-1].asnumpy() == 0.5) == a.shape[1]
def check_where():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
b = nd.arange(0, LARGE_X * SMALL_Y).reshape(LARGE_X, SMALL_Y)
res = nd.where(b > 100, a, b)
assert np.sum(res[-1].asnumpy() == 1) == b.shape[1]
csr_cond = nd.sparse.cast_storage(b < 10, 'csr')
res = nd.sparse.where(csr_cond, a, b)
assert np.sum(res[0].asnumpy() == 1) == 10
def check_pick():
a = mx.nd.ones(shape=(256 * 35, 1024 * 1024))
b = mx.nd.ones(shape=(256 * 35, ))
res = mx.nd.pick(a, b)
assert res.shape == b.shape
@pytest.mark.skip(reason="Memory doesn't free up after stacked execution with other ops, "
"tracked at https://github.com/apache/mxnet/issues/17411")
def check_depthtospace():
def numpy_depth_to_space(x, blocksize):
b, c, h, w = x.shape[0], x.shape[1], x.shape[2], x.shape[3]
tmp = np.reshape(x, [b, blocksize, blocksize, c // (blocksize**2), h,
w])
tmp = np.transpose(tmp, [0, 3, 4, 1, 5, 2])
y = np.reshape(tmp, [b, c // (blocksize**2), h * blocksize,
w * blocksize])
return y
shape_inp = (LARGE_X, 8, 4, 2)
data = rand_ndarray(shape_inp, 'default')
data_np = data.asnumpy()
expected = numpy_depth_to_space(data_np, 2)
output = mx.nd.depth_to_space(data, 2)
assert_almost_equal(output.asnumpy(), expected, atol=1e-3, rtol=1e-3)
@pytest.mark.skip(reason="Memory doesn't free up after stacked execution with other ops, "
"tracked at https://github.com/apache/mxnet/issues/17411")
def check_spacetodepth():
def numpy_space_to_depth(x, blocksize):
b, c, h, w = x.shape[0], x.shape[1], x.shape[2], x.shape[3]
tmp = np.reshape(x, [b, c, h // blocksize, blocksize, w // blocksize,
blocksize])
tmp = np.transpose(tmp, [0, 3, 5, 1, 2, 4])
y = np.reshape(tmp, [b, c * (blocksize**2), h // blocksize,
w // blocksize])
return y
shape_inp = (LARGE_X, 2, 8, 4)
data = rand_ndarray(shape_inp, 'default')
data_np = data.asnumpy()
expected = numpy_space_to_depth(data_np, 2)
output = mx.nd.space_to_depth(data, 2)
assert_almost_equal(output.asnumpy(), expected, atol=1e-3, rtol=1e-3)
@with_seed()
def check_diag():
a_np = np.random.random((LARGE_X, SMALL_Y)).astype(np.float32)
a = mx.nd.array(a_np)
# k == 0
r = mx.nd.diag(a)
assert_almost_equal(r.asnumpy(), np.diag(a_np))
# k == 1
k = 1
r = mx.nd.diag(a, k=k)
assert_almost_equal(r.asnumpy(), np.diag(a_np, k=k))
# k == -1
k = -1
r = mx.nd.diag(a, k=k)
assert_almost_equal(r.asnumpy(), np.diag(a_np, k=k))
# random k
k = np.random.randint(-min(LARGE_X, SMALL_Y) + 1, min(LARGE_X, SMALL_Y))
r = mx.nd.diag(a, k=k)
assert_almost_equal(r.asnumpy(), np.diag(a_np, k=k))
@with_seed()
def check_ravel_multi_index():
x1, y1 = rand_coord_2d((LARGE_X - 100), LARGE_X, 10, SMALL_Y)
x2, y2 = rand_coord_2d((LARGE_X - 200), LARGE_X, 9, SMALL_Y)
x3, y3 = rand_coord_2d((LARGE_X - 300), LARGE_X, 8, SMALL_Y)
indices_2d = [[x1, x2, x3], [y1, y2, y3]]
idx = mx.nd.ravel_multi_index(mx.nd.array(indices_2d, dtype=np.int64),
shape=(LARGE_X, SMALL_Y))
idx_numpy = np.ravel_multi_index(indices_2d, (LARGE_X, SMALL_Y))
assert np.sum(1 for i in range(idx.size) if idx[i] == idx_numpy[i]) == 3
@with_seed()
def check_unravel_index():
x1, y1 = rand_coord_2d((LARGE_X - 100), LARGE_X, 10, SMALL_Y)
x2, y2 = rand_coord_2d((LARGE_X - 200), LARGE_X, 9, SMALL_Y)
x3, y3 = rand_coord_2d((LARGE_X - 300), LARGE_X, 8, SMALL_Y)
original_2d_indices = [[x1, x2, x3], [y1, y2, y3]]
idx_numpy = np.ravel_multi_index(original_2d_indices, (LARGE_X, SMALL_Y))
indices_2d = mx.nd.unravel_index(mx.nd.array(idx_numpy, dtype=np.int64),
shape=(LARGE_X, SMALL_Y))
assert (indices_2d.asnumpy() == np.array(original_2d_indices)).all()
@pytest.mark.skip(reason="Memory doesn't free up after stacked execution with other ops, " +
"tracked at https://github.com/apache/mxnet/issues/17411")
def check_transpose():
check_dtypes = [np.float32, np.int64]
for dtype in check_dtypes:
b = create_2d_tensor(rows=LARGE_X, columns=SMALL_Y, dtype=dtype)
t = b.T
assert t.shape == (SMALL_Y, LARGE_X)
ref_out = np.transpose(b.asnumpy())
assert_almost_equal(t.asnumpy(), ref_out, rtol=1e-10)
@pytest.mark.skip(reason="Memory doesn't free up after stacked execution with other ops, " +
"tracked at https://github.com/apache/mxnet/issues/17411")
def check_swapaxes():
b = create_2d_tensor(rows=LARGE_X, columns=SMALL_Y)
t = nd.swapaxes(b, dim1=0, dim2=1)
assert np.sum(t[:, -1].asnumpy() == (LARGE_X - 1)) == b.shape[1]
assert t.shape == (SMALL_Y, LARGE_X)
@pytest.mark.skip(reason="Memory doesn't free up after stacked execution with other ops, " +
"tracked at https://github.com/apache/mxnet/issues/17411")
def check_flip():
b = create_2d_tensor(rows=LARGE_X, columns=SMALL_Y)
t = nd.flip(b, axis=0)
assert np.sum(t[-1, :].asnumpy() == 0) == b.shape[1]
assert t.shape == (LARGE_X, SMALL_Y)
def check_sequence_mask():
# Sequence Mask input [max_sequence_length, batch_size, other_feature_dims]
# test with input batch_size = 2
a = nd.arange(0, LARGE_X * SMALL_Y * 2).reshape(LARGE_X, 2, SMALL_Y)
# test as identity operator
b = nd.SequenceMask(a)
assert b[-1][0][1] == a[-1][0][1]
assert b.shape == a.shape
# test with default mask
b = nd.SequenceMask(a, sequence_length=nd.array([1, 1]),
use_sequence_length=True)
assert b[0][1][-1] == a[0][1][-1] # first sequence of each batch kept
assert b[-1][-1][-1] != a[-1][-1][-1] # rest sequences masked
assert b[-1][-1][-1] == 0
# test with mask value
b = nd.SequenceMask(a, sequence_length=nd.array([1, 1]),
use_sequence_length=True, value=-1)
assert b[-1][-1][-1] == -1
def check_sequence_reverse():
a = nd.arange(0, LARGE_X * SMALL_Y * 2).reshape(LARGE_X, 2, SMALL_Y)
# test as reverse operator
b = nd.SequenceReverse(a)
assert b[-1][0][0] == a[0][0][0]
assert b.shape == a.shape
# test with sequence length
# 2 rows of batch 1 and 3 rows of batch 2 reversed
b = nd.SequenceReverse(a, sequence_length=nd.array([2, 3]),
use_sequence_length=True)
assert b[1][0][0] == a[0][0][0] # check if reversed
assert b[-1][0][0] == a[-1][0][0] # check if intact
assert b.shape == a.shape
def check_sequence_last():
a = nd.arange(0, LARGE_X * SMALL_Y * 2).reshape(LARGE_X, 2, SMALL_Y)
# test if returns last sequence
b = nd.SequenceLast(a)
assert_almost_equal(b.asnumpy(), a[-1].asnumpy()) # only checks for (2, SMALL_Y) tensor
assert b.shape == (2, SMALL_Y)
# test with sequence length
# parameter sequence_length - NDArray with shape (batch_size)
# (2,3) indicates 2nd sequence from batch 1 and 3rd sequence from batch 2
b = nd.SequenceLast(a, sequence_length=mx.nd.array([2, 3]),
use_sequence_length=True)
# check if it takes 2nd sequence from the first batch
assert b[0][-1] == a[1][0][-1]
def check_index_copy():
x = mx.nd.zeros((LARGE_X, SMALL_Y))
t = mx.nd.arange(1, SMALL_Y + 1).reshape((1, SMALL_Y))
index = mx.nd.array([LARGE_X - 1], dtype="int64")
x = mx.nd.contrib.index_copy(x, index, t)
assert x[-1][-1] == t[0][-1]
def check_one_hot():
# default dtype of ndarray is float32 which cannot index elements over 2^32
a = nd.array([1, (VLARGE_X - 1)], dtype=np.int64)
b = nd.one_hot(a, VLARGE_X)
b[0][1] == 1
b[1][-1] == 1
def check_full():
a = nd.full((SMALL_Y, LARGE_X), 3)
assert a.shape == (SMALL_Y, LARGE_X)
assert a[SMALL_Y//2][LARGE_X//2] == 3
assert a[-1][-1] == 3
def check_shape():
b = create_2d_tensor(rows=SMALL_Y, columns=LARGE_X)
mx.nd.waitall()
assert b.shape == (SMALL_Y, LARGE_X)
def check_size():
b = create_2d_tensor(rows=SMALL_Y, columns=LARGE_X)
mx.nd.waitall()
assert b.size == LARGE_SIZE
def check_copy():
a = nd.ones((SMALL_Y, LARGE_X))
b = a.copy()
nd.waitall()
assert b.shape == a.shape
assert b.size == LARGE_SIZE
def check_copy_to():
a = create_2d_tensor(rows=SMALL_Y, columns=LARGE_X)
b = nd.array(np.zeros((SMALL_Y, LARGE_X)))
c = a.copyto(b)
assert c is b
assert b[-1][-1] == SMALL_Y-1
def check_reshape_like():
a = nd.array(np.zeros((SMALL_Y, LARGE_X)))
b = nd.array(np.zeros((SMALL_Y//2, LARGE_X*2)))
c = nd.reshape_like(a, b)
assert c.shape == (SMALL_Y//2, LARGE_X*2)
def check_flatten():
check_dtypes = [np.float32, np.int64]
for dtype in check_dtypes:
a = create_2d_tensor(rows=LARGE_X, columns=SMALL_Y, dtype=dtype).reshape((LARGE_X//2, 2, SMALL_Y))
b = nd.flatten(a)
# Here we removed the value asserts due to different precision of `int64` and `float32`.
# For `float32`, it will lose some precision when `LARGE_X` is too large, that is `LARGE_X-1`
# and `LARGE_X-2` can not represent the accurate value in the current situation.
assert b.shape == (LARGE_X//2, SMALL_Y*2)
assert_almost_equal(b[-1,-1].asnumpy(), a[-1,-1,-1].asnumpy(), rtol=1e-8)
def check_concat():
a = nd.array(np.ones((SMALL_Y, LARGE_X)))
b = nd.array(np.zeros((SMALL_Y, LARGE_X)))
for axis in [0, 1]:
c = nd.concat(a, b, dim=axis)
c.wait_to_read()
assert c.shape[axis] == b.shape[axis] * 2
assert c.shape[1-axis] == b.shape[1-axis]
def check_stack():
a = nd.array(np.ones((SMALL_Y, LARGE_X)))
b = nd.array(np.zeros((SMALL_Y, LARGE_X)))
c = nd.stack(a, b, axis=1)
assert c.shape == (b.shape[0], 2, LARGE_X)
def check_broadcast_axes():
a = create_2d_tensor(rows=1, columns=LARGE_X)
b = nd.broadcast_axis(a, axis=[0], size=2)
assert b.shape == (a.shape[0]*2, a.shape[1])
def check_astype():
x = create_2d_tensor(rows=SMALL_Y, columns=LARGE_X)