diff --git a/ql/src/java/org/apache/hadoop/hive/ql/plan/mapper/GroupTransformer.java b/ql/src/java/org/apache/hadoop/hive/ql/plan/mapper/GroupTransformer.java deleted file mode 100644 index b6b77e40e32d..000000000000 --- a/ql/src/java/org/apache/hadoop/hive/ql/plan/mapper/GroupTransformer.java +++ /dev/null @@ -1,25 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.hadoop.hive.ql.plan.mapper; - -import org.apache.hadoop.hive.ql.plan.mapper.PlanMapper.EquivGroup; - -public interface GroupTransformer { - void map(EquivGroup group); -} \ No newline at end of file diff --git a/ql/src/java/org/apache/hadoop/hive/ql/plan/mapper/PlanMapper.java b/ql/src/java/org/apache/hadoop/hive/ql/plan/mapper/PlanMapper.java index 80c23ae9a3a9..10d14cc5b3b5 100644 --- a/ql/src/java/org/apache/hadoop/hive/ql/plan/mapper/PlanMapper.java +++ b/ql/src/java/org/apache/hadoop/hive/ql/plan/mapper/PlanMapper.java @@ -21,7 +21,6 @@ import java.lang.reflect.Modifier; import java.util.ArrayList; import java.util.Collection; -import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.IdentityHashMap; @@ -200,54 +199,46 @@ public void merge(Object o1, Object o2) { } private void link(Object o1, Object o2, boolean mayMerge) { - - Set keySet = Collections.newSetFromMap(new IdentityHashMap()); - keySet.add(o1); - keySet.add(o2); - keySet.add(getKeyFor(o1)); - keySet.add(getKeyFor(o2)); - - Set mGroups = Collections.newSetFromMap(new IdentityHashMap()); - - for (Object object : keySet) { - EquivGroup group = objectMap.get(object); - if (group != null) { - mGroups.add(group); - } + // Caches signatures on the first access. A signature of an Operator could change as optimizers could mutate it, + // keeping its semantics. The current implementation caches the signature before optimizations so that we can + // link Operators with their signatures at consistent timing. + registerSignature(o1); + registerSignature(o2); + final EquivGroup linkedGroup1 = objectMap.get(o1); + final EquivGroup linkedGroup2 = objectMap.get(o2); + + if (linkedGroup1 == null && linkedGroup2 == null) { + final EquivGroup group = new EquivGroup(); + group.add(o1); + group.add(o2); + groups.add(group); + return; } - if (mGroups.size() > 1) { - if (!mayMerge) { - throw new RuntimeException("equivalence mapping violation"); - } - EquivGroup newGrp = new EquivGroup(); - newGrp.add(o1); - newGrp.add(o2); - for (EquivGroup g : mGroups) { - for (Object o : g.members) { - newGrp.add(o); - } - } - groups.add(newGrp); - groups.removeAll(mGroups); - } else { - EquivGroup targetGroup = mGroups.isEmpty() ? new EquivGroup() : mGroups.iterator().next(); - groups.add(targetGroup); - targetGroup.add(o1); - targetGroup.add(o2); + if (linkedGroup1 == null || linkedGroup2 == null || linkedGroup1 == linkedGroup2) { + final EquivGroup group = linkedGroup1 != null ? linkedGroup1 : linkedGroup2; + group.add(o1); + group.add(o2); + return; } + if (!mayMerge) { + throw new RuntimeException(String.format( + "Failed to link %s and %s. This error mostly means a bug of Hive", + o1, o2 + )); + } + EquivGroup newGrp = new EquivGroup(); + newGrp.add(o1); + newGrp.add(o2); + linkedGroup1.members.forEach(newGrp::add); + linkedGroup2.members.forEach(newGrp::add); + groups.add(newGrp); + groups.remove(linkedGroup1); + groups.remove(linkedGroup2); } private OpTreeSignatureFactory signatureCache = OpTreeSignatureFactory.newCache(); - private Object getKeyFor(Object o) { - if (o instanceof Operator) { - Operator operator = (Operator) o; - return signatureCache.getSignature(operator); - } - return o; - } - public List getAll(Class clazz) { List ret = new ArrayList<>(); for (EquivGroup g : groups) { @@ -256,12 +247,6 @@ public List getAll(Class clazz) { return ret; } - public void runMapper(GroupTransformer mapper) { - for (EquivGroup equivGroup : groups) { - mapper.map(equivGroup); - } - } - public List lookupAll(Class clazz, Object key) { EquivGroup group = objectMap.get(key); if (group == null) { @@ -286,8 +271,13 @@ public Iterator iterateGroups() { } public OpTreeSignature getSignatureOf(Operator op) { - OpTreeSignature sig = signatureCache.getSignature(op); - return sig; + return signatureCache.getSignature(op); + } + + private void registerSignature(Object o) { + if (o instanceof Operator) { + getSignatureOf((Operator) o); + } } public void clearSignatureCache() { diff --git a/ql/src/test/queries/clientpositive/cbo_cte_materialization.q b/ql/src/test/queries/clientpositive/cbo_cte_materialization.q new file mode 100644 index 000000000000..e1c2a4b6ccd2 --- /dev/null +++ b/ql/src/test/queries/clientpositive/cbo_cte_materialization.q @@ -0,0 +1,27 @@ +--! qt:dataset:src + +set hive.optimize.cte.materialize.threshold=1; +set hive.optimize.cte.materialize.full.aggregate.only=false; + +EXPLAIN CBO +WITH materialized_cte AS ( + SELECT key, value FROM src WHERE key != '100' +), +another_materialized_cte AS ( + SELECT key, value FROM src WHERE key != '100' +) +SELECT a.key, a.value, b.key, b.value +FROM materialized_cte a +JOIN another_materialized_cte b ON a.key = b.key +ORDER BY a.key; + +WITH materialized_cte AS ( + SELECT key, value FROM src WHERE key != '100' +), +another_materialized_cte AS ( + SELECT key, value FROM src WHERE key != '100' +) +SELECT a.key, a.value, b.key, b.value +FROM materialized_cte a +JOIN another_materialized_cte b ON a.key = b.key +ORDER BY a.key; diff --git a/ql/src/test/queries/clientpositive/perf/cbo_query14.q b/ql/src/test/queries/clientpositive/perf/cbo_query14.q index 60123b2c32a5..eaee914c8dfc 100644 --- a/ql/src/test/queries/clientpositive/perf/cbo_query14.q +++ b/ql/src/test/queries/clientpositive/perf/cbo_query14.q @@ -1,4 +1,3 @@ ---! qt:disabled:HIVE-24167 set hive.mapred.mode=nonstrict; -- start query 1 in stream 0 using template query14.tpl and seed 1819994127 explain cbo diff --git a/ql/src/test/queries/clientpositive/perf/query14.q b/ql/src/test/queries/clientpositive/perf/query14.q index 8a0846443151..c12ecb56c4ad 100644 --- a/ql/src/test/queries/clientpositive/perf/query14.q +++ b/ql/src/test/queries/clientpositive/perf/query14.q @@ -1,4 +1,3 @@ ---! qt:disabled:HIVE-24167 set hive.mapred.mode=nonstrict; -- start query 1 in stream 0 using template query14.tpl and seed 1819994127 explain diff --git a/ql/src/test/results/clientpositive/llap/cbo_cte_materialization.q.out b/ql/src/test/results/clientpositive/llap/cbo_cte_materialization.q.out new file mode 100644 index 000000000000..c168288f5190 --- /dev/null +++ b/ql/src/test/results/clientpositive/llap/cbo_cte_materialization.q.out @@ -0,0 +1,1101 @@ +PREHOOK: query: EXPLAIN CBO +WITH materialized_cte AS ( + SELECT key, value FROM src WHERE key != '100' +), +another_materialized_cte AS ( + SELECT key, value FROM src WHERE key != '100' +) +SELECT a.key, a.value, b.key, b.value +FROM materialized_cte a +JOIN another_materialized_cte b ON a.key = b.key +ORDER BY a.key +PREHOOK: type: QUERY +PREHOOK: Input: default@another_materialized_cte +PREHOOK: Input: default@materialized_cte +#### A masked pattern was here #### +POSTHOOK: query: EXPLAIN CBO +WITH materialized_cte AS ( + SELECT key, value FROM src WHERE key != '100' +), +another_materialized_cte AS ( + SELECT key, value FROM src WHERE key != '100' +) +SELECT a.key, a.value, b.key, b.value +FROM materialized_cte a +JOIN another_materialized_cte b ON a.key = b.key +ORDER BY a.key +POSTHOOK: type: QUERY +POSTHOOK: Input: default@another_materialized_cte +POSTHOOK: Input: default@materialized_cte +#### A masked pattern was here #### +CBO PLAN: +HiveSortLimit(sort0=[$0], dir0=[ASC]) + HiveProject(key=[$0], value=[$1], key0=[$2], value0=[$3]) + HiveJoin(condition=[=($0, $2)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(key=[$0], value=[$1]) + HiveFilter(condition=[IS NOT NULL($0)]) + HiveTableScan(table=[[default, materialized_cte]], table:alias=[a]) + HiveProject(key=[$0], value=[$1]) + HiveFilter(condition=[IS NOT NULL($0)]) + HiveTableScan(table=[[default, another_materialized_cte]], table:alias=[b]) + +PREHOOK: query: WITH materialized_cte AS ( + SELECT key, value FROM src WHERE key != '100' +), +another_materialized_cte AS ( + SELECT key, value FROM src WHERE key != '100' +) +SELECT a.key, a.value, b.key, b.value +FROM materialized_cte a +JOIN another_materialized_cte b ON a.key = b.key +ORDER BY a.key +PREHOOK: type: QUERY +PREHOOK: Input: default@another_materialized_cte +PREHOOK: Input: default@materialized_cte +PREHOOK: Input: default@src +PREHOOK: Output: database:default +PREHOOK: Output: default@another_materialized_cte +PREHOOK: Output: default@materialized_cte +#### A masked pattern was here #### +POSTHOOK: query: WITH materialized_cte AS ( + SELECT key, value FROM src WHERE key != '100' +), +another_materialized_cte AS ( + SELECT key, value FROM src WHERE key != '100' +) +SELECT a.key, a.value, b.key, b.value +FROM materialized_cte a +JOIN another_materialized_cte b ON a.key = b.key +ORDER BY a.key +POSTHOOK: type: QUERY +POSTHOOK: Input: default@another_materialized_cte +POSTHOOK: Input: default@materialized_cte +POSTHOOK: Input: default@src +POSTHOOK: Output: database:default +POSTHOOK: Output: default@another_materialized_cte +POSTHOOK: Output: default@materialized_cte +#### A masked pattern was here #### +0 val_0 0 val_0 +0 val_0 0 val_0 +0 val_0 0 val_0 +0 val_0 0 val_0 +0 val_0 0 val_0 +0 val_0 0 val_0 +0 val_0 0 val_0 +0 val_0 0 val_0 +0 val_0 0 val_0 +10 val_10 10 val_10 +103 val_103 103 val_103 +103 val_103 103 val_103 +103 val_103 103 val_103 +103 val_103 103 val_103 +104 val_104 104 val_104 +104 val_104 104 val_104 +104 val_104 104 val_104 +104 val_104 104 val_104 +105 val_105 105 val_105 +11 val_11 11 val_11 +111 val_111 111 val_111 +113 val_113 113 val_113 +113 val_113 113 val_113 +113 val_113 113 val_113 +113 val_113 113 val_113 +114 val_114 114 val_114 +116 val_116 116 val_116 +118 val_118 118 val_118 +118 val_118 118 val_118 +118 val_118 118 val_118 +118 val_118 118 val_118 +119 val_119 119 val_119 +119 val_119 119 val_119 +119 val_119 119 val_119 +119 val_119 119 val_119 +119 val_119 119 val_119 +119 val_119 119 val_119 +119 val_119 119 val_119 +119 val_119 119 val_119 +119 val_119 119 val_119 +12 val_12 12 val_12 +12 val_12 12 val_12 +12 val_12 12 val_12 +12 val_12 12 val_12 +120 val_120 120 val_120 +120 val_120 120 val_120 +120 val_120 120 val_120 +120 val_120 120 val_120 +125 val_125 125 val_125 +125 val_125 125 val_125 +125 val_125 125 val_125 +125 val_125 125 val_125 +126 val_126 126 val_126 +128 val_128 128 val_128 +128 val_128 128 val_128 +128 val_128 128 val_128 +128 val_128 128 val_128 +128 val_128 128 val_128 +128 val_128 128 val_128 +128 val_128 128 val_128 +128 val_128 128 val_128 +128 val_128 128 val_128 +129 val_129 129 val_129 +129 val_129 129 val_129 +129 val_129 129 val_129 +129 val_129 129 val_129 +131 val_131 131 val_131 +133 val_133 133 val_133 +134 val_134 134 val_134 +134 val_134 134 val_134 +134 val_134 134 val_134 +134 val_134 134 val_134 +136 val_136 136 val_136 +137 val_137 137 val_137 +137 val_137 137 val_137 +137 val_137 137 val_137 +137 val_137 137 val_137 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +138 val_138 138 val_138 +143 val_143 143 val_143 +145 val_145 145 val_145 +146 val_146 146 val_146 +146 val_146 146 val_146 +146 val_146 146 val_146 +146 val_146 146 val_146 +149 val_149 149 val_149 +149 val_149 149 val_149 +149 val_149 149 val_149 +149 val_149 149 val_149 +15 val_15 15 val_15 +15 val_15 15 val_15 +15 val_15 15 val_15 +15 val_15 15 val_15 +150 val_150 150 val_150 +152 val_152 152 val_152 +152 val_152 152 val_152 +152 val_152 152 val_152 +152 val_152 152 val_152 +153 val_153 153 val_153 +155 val_155 155 val_155 +156 val_156 156 val_156 +157 val_157 157 val_157 +158 val_158 158 val_158 +160 val_160 160 val_160 +162 val_162 162 val_162 +163 val_163 163 val_163 +164 val_164 164 val_164 +164 val_164 164 val_164 +164 val_164 164 val_164 +164 val_164 164 val_164 +165 val_165 165 val_165 +165 val_165 165 val_165 +165 val_165 165 val_165 +165 val_165 165 val_165 +166 val_166 166 val_166 +167 val_167 167 val_167 +167 val_167 167 val_167 +167 val_167 167 val_167 +167 val_167 167 val_167 +167 val_167 167 val_167 +167 val_167 167 val_167 +167 val_167 167 val_167 +167 val_167 167 val_167 +167 val_167 167 val_167 +168 val_168 168 val_168 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +169 val_169 169 val_169 +17 val_17 17 val_17 +170 val_170 170 val_170 +172 val_172 172 val_172 +172 val_172 172 val_172 +172 val_172 172 val_172 +172 val_172 172 val_172 +174 val_174 174 val_174 +174 val_174 174 val_174 +174 val_174 174 val_174 +174 val_174 174 val_174 +175 val_175 175 val_175 +175 val_175 175 val_175 +175 val_175 175 val_175 +175 val_175 175 val_175 +176 val_176 176 val_176 +176 val_176 176 val_176 +176 val_176 176 val_176 +176 val_176 176 val_176 +177 val_177 177 val_177 +178 val_178 178 val_178 +179 val_179 179 val_179 +179 val_179 179 val_179 +179 val_179 179 val_179 +179 val_179 179 val_179 +18 val_18 18 val_18 +18 val_18 18 val_18 +18 val_18 18 val_18 +18 val_18 18 val_18 +180 val_180 180 val_180 +181 val_181 181 val_181 +183 val_183 183 val_183 +186 val_186 186 val_186 +187 val_187 187 val_187 +187 val_187 187 val_187 +187 val_187 187 val_187 +187 val_187 187 val_187 +187 val_187 187 val_187 +187 val_187 187 val_187 +187 val_187 187 val_187 +187 val_187 187 val_187 +187 val_187 187 val_187 +189 val_189 189 val_189 +19 val_19 19 val_19 +190 val_190 190 val_190 +191 val_191 191 val_191 +191 val_191 191 val_191 +191 val_191 191 val_191 +191 val_191 191 val_191 +192 val_192 192 val_192 +193 val_193 193 val_193 +193 val_193 193 val_193 +193 val_193 193 val_193 +193 val_193 193 val_193 +193 val_193 193 val_193 +193 val_193 193 val_193 +193 val_193 193 val_193 +193 val_193 193 val_193 +193 val_193 193 val_193 +194 val_194 194 val_194 +195 val_195 195 val_195 +195 val_195 195 val_195 +195 val_195 195 val_195 +195 val_195 195 val_195 +196 val_196 196 val_196 +197 val_197 197 val_197 +197 val_197 197 val_197 +197 val_197 197 val_197 +197 val_197 197 val_197 +199 val_199 199 val_199 +199 val_199 199 val_199 +199 val_199 199 val_199 +199 val_199 199 val_199 +199 val_199 199 val_199 +199 val_199 199 val_199 +199 val_199 199 val_199 +199 val_199 199 val_199 +199 val_199 199 val_199 +2 val_2 2 val_2 +20 val_20 20 val_20 +200 val_200 200 val_200 +200 val_200 200 val_200 +200 val_200 200 val_200 +200 val_200 200 val_200 +201 val_201 201 val_201 +202 val_202 202 val_202 +203 val_203 203 val_203 +203 val_203 203 val_203 +203 val_203 203 val_203 +203 val_203 203 val_203 +205 val_205 205 val_205 +205 val_205 205 val_205 +205 val_205 205 val_205 +205 val_205 205 val_205 +207 val_207 207 val_207 +207 val_207 207 val_207 +207 val_207 207 val_207 +207 val_207 207 val_207 +208 val_208 208 val_208 +208 val_208 208 val_208 +208 val_208 208 val_208 +208 val_208 208 val_208 +208 val_208 208 val_208 +208 val_208 208 val_208 +208 val_208 208 val_208 +208 val_208 208 val_208 +208 val_208 208 val_208 +209 val_209 209 val_209 +209 val_209 209 val_209 +209 val_209 209 val_209 +209 val_209 209 val_209 +213 val_213 213 val_213 +213 val_213 213 val_213 +213 val_213 213 val_213 +213 val_213 213 val_213 +214 val_214 214 val_214 +216 val_216 216 val_216 +216 val_216 216 val_216 +216 val_216 216 val_216 +216 val_216 216 val_216 +217 val_217 217 val_217 +217 val_217 217 val_217 +217 val_217 217 val_217 +217 val_217 217 val_217 +218 val_218 218 val_218 +219 val_219 219 val_219 +219 val_219 219 val_219 +219 val_219 219 val_219 +219 val_219 219 val_219 +221 val_221 221 val_221 +221 val_221 221 val_221 +221 val_221 221 val_221 +221 val_221 221 val_221 +222 val_222 222 val_222 +223 val_223 223 val_223 +223 val_223 223 val_223 +223 val_223 223 val_223 +223 val_223 223 val_223 +224 val_224 224 val_224 +224 val_224 224 val_224 +224 val_224 224 val_224 +224 val_224 224 val_224 +226 val_226 226 val_226 +228 val_228 228 val_228 +229 val_229 229 val_229 +229 val_229 229 val_229 +229 val_229 229 val_229 +229 val_229 229 val_229 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +230 val_230 230 val_230 +233 val_233 233 val_233 +233 val_233 233 val_233 +233 val_233 233 val_233 +233 val_233 233 val_233 +235 val_235 235 val_235 +237 val_237 237 val_237 +237 val_237 237 val_237 +237 val_237 237 val_237 +237 val_237 237 val_237 +238 val_238 238 val_238 +238 val_238 238 val_238 +238 val_238 238 val_238 +238 val_238 238 val_238 +239 val_239 239 val_239 +239 val_239 239 val_239 +239 val_239 239 val_239 +239 val_239 239 val_239 +24 val_24 24 val_24 +24 val_24 24 val_24 +24 val_24 24 val_24 +24 val_24 24 val_24 +241 val_241 241 val_241 +242 val_242 242 val_242 +242 val_242 242 val_242 +242 val_242 242 val_242 +242 val_242 242 val_242 +244 val_244 244 val_244 +247 val_247 247 val_247 +248 val_248 248 val_248 +249 val_249 249 val_249 +252 val_252 252 val_252 +255 val_255 255 val_255 +255 val_255 255 val_255 +255 val_255 255 val_255 +255 val_255 255 val_255 +256 val_256 256 val_256 +256 val_256 256 val_256 +256 val_256 256 val_256 +256 val_256 256 val_256 +257 val_257 257 val_257 +258 val_258 258 val_258 +26 val_26 26 val_26 +26 val_26 26 val_26 +26 val_26 26 val_26 +26 val_26 26 val_26 +260 val_260 260 val_260 +262 val_262 262 val_262 +263 val_263 263 val_263 +265 val_265 265 val_265 +265 val_265 265 val_265 +265 val_265 265 val_265 +265 val_265 265 val_265 +266 val_266 266 val_266 +27 val_27 27 val_27 +272 val_272 272 val_272 +272 val_272 272 val_272 +272 val_272 272 val_272 +272 val_272 272 val_272 +273 val_273 273 val_273 +273 val_273 273 val_273 +273 val_273 273 val_273 +273 val_273 273 val_273 +273 val_273 273 val_273 +273 val_273 273 val_273 +273 val_273 273 val_273 +273 val_273 273 val_273 +273 val_273 273 val_273 +274 val_274 274 val_274 +275 val_275 275 val_275 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +277 val_277 277 val_277 +278 val_278 278 val_278 +278 val_278 278 val_278 +278 val_278 278 val_278 +278 val_278 278 val_278 +28 val_28 28 val_28 +280 val_280 280 val_280 +280 val_280 280 val_280 +280 val_280 280 val_280 +280 val_280 280 val_280 +281 val_281 281 val_281 +281 val_281 281 val_281 +281 val_281 281 val_281 +281 val_281 281 val_281 +282 val_282 282 val_282 +282 val_282 282 val_282 +282 val_282 282 val_282 +282 val_282 282 val_282 +283 val_283 283 val_283 +284 val_284 284 val_284 +285 val_285 285 val_285 +286 val_286 286 val_286 +287 val_287 287 val_287 +288 val_288 288 val_288 +288 val_288 288 val_288 +288 val_288 288 val_288 +288 val_288 288 val_288 +289 val_289 289 val_289 +291 val_291 291 val_291 +292 val_292 292 val_292 +296 val_296 296 val_296 +298 val_298 298 val_298 +298 val_298 298 val_298 +298 val_298 298 val_298 +298 val_298 298 val_298 +298 val_298 298 val_298 +298 val_298 298 val_298 +298 val_298 298 val_298 +298 val_298 298 val_298 +298 val_298 298 val_298 +30 val_30 30 val_30 +302 val_302 302 val_302 +305 val_305 305 val_305 +306 val_306 306 val_306 +307 val_307 307 val_307 +307 val_307 307 val_307 +307 val_307 307 val_307 +307 val_307 307 val_307 +308 val_308 308 val_308 +309 val_309 309 val_309 +309 val_309 309 val_309 +309 val_309 309 val_309 +309 val_309 309 val_309 +310 val_310 310 val_310 +311 val_311 311 val_311 +311 val_311 311 val_311 +311 val_311 311 val_311 +311 val_311 311 val_311 +311 val_311 311 val_311 +311 val_311 311 val_311 +311 val_311 311 val_311 +311 val_311 311 val_311 +311 val_311 311 val_311 +315 val_315 315 val_315 +316 val_316 316 val_316 +316 val_316 316 val_316 +316 val_316 316 val_316 +316 val_316 316 val_316 +316 val_316 316 val_316 +316 val_316 316 val_316 +316 val_316 316 val_316 +316 val_316 316 val_316 +316 val_316 316 val_316 +317 val_317 317 val_317 +317 val_317 317 val_317 +317 val_317 317 val_317 +317 val_317 317 val_317 +318 val_318 318 val_318 +318 val_318 318 val_318 +318 val_318 318 val_318 +318 val_318 318 val_318 +318 val_318 318 val_318 +318 val_318 318 val_318 +318 val_318 318 val_318 +318 val_318 318 val_318 +318 val_318 318 val_318 +321 val_321 321 val_321 +321 val_321 321 val_321 +321 val_321 321 val_321 +321 val_321 321 val_321 +322 val_322 322 val_322 +322 val_322 322 val_322 +322 val_322 322 val_322 +322 val_322 322 val_322 +323 val_323 323 val_323 +325 val_325 325 val_325 +325 val_325 325 val_325 +325 val_325 325 val_325 +325 val_325 325 val_325 +327 val_327 327 val_327 +327 val_327 327 val_327 +327 val_327 327 val_327 +327 val_327 327 val_327 +327 val_327 327 val_327 +327 val_327 327 val_327 +327 val_327 327 val_327 +327 val_327 327 val_327 +327 val_327 327 val_327 +33 val_33 33 val_33 +331 val_331 331 val_331 +331 val_331 331 val_331 +331 val_331 331 val_331 +331 val_331 331 val_331 +332 val_332 332 val_332 +333 val_333 333 val_333 +333 val_333 333 val_333 +333 val_333 333 val_333 +333 val_333 333 val_333 +335 val_335 335 val_335 +336 val_336 336 val_336 +338 val_338 338 val_338 +339 val_339 339 val_339 +34 val_34 34 val_34 +341 val_341 341 val_341 +342 val_342 342 val_342 +342 val_342 342 val_342 +342 val_342 342 val_342 +342 val_342 342 val_342 +344 val_344 344 val_344 +344 val_344 344 val_344 +344 val_344 344 val_344 +344 val_344 344 val_344 +345 val_345 345 val_345 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +348 val_348 348 val_348 +35 val_35 35 val_35 +35 val_35 35 val_35 +35 val_35 35 val_35 +35 val_35 35 val_35 +35 val_35 35 val_35 +35 val_35 35 val_35 +35 val_35 35 val_35 +35 val_35 35 val_35 +35 val_35 35 val_35 +351 val_351 351 val_351 +353 val_353 353 val_353 +353 val_353 353 val_353 +353 val_353 353 val_353 +353 val_353 353 val_353 +356 val_356 356 val_356 +360 val_360 360 val_360 +362 val_362 362 val_362 +364 val_364 364 val_364 +365 val_365 365 val_365 +366 val_366 366 val_366 +367 val_367 367 val_367 +367 val_367 367 val_367 +367 val_367 367 val_367 +367 val_367 367 val_367 +368 val_368 368 val_368 +369 val_369 369 val_369 +369 val_369 369 val_369 +369 val_369 369 val_369 +369 val_369 369 val_369 +369 val_369 369 val_369 +369 val_369 369 val_369 +369 val_369 369 val_369 +369 val_369 369 val_369 +369 val_369 369 val_369 +37 val_37 37 val_37 +37 val_37 37 val_37 +37 val_37 37 val_37 +37 val_37 37 val_37 +373 val_373 373 val_373 +374 val_374 374 val_374 +375 val_375 375 val_375 +377 val_377 377 val_377 +378 val_378 378 val_378 +379 val_379 379 val_379 +382 val_382 382 val_382 +382 val_382 382 val_382 +382 val_382 382 val_382 +382 val_382 382 val_382 +384 val_384 384 val_384 +384 val_384 384 val_384 +384 val_384 384 val_384 +384 val_384 384 val_384 +384 val_384 384 val_384 +384 val_384 384 val_384 +384 val_384 384 val_384 +384 val_384 384 val_384 +384 val_384 384 val_384 +386 val_386 386 val_386 +389 val_389 389 val_389 +392 val_392 392 val_392 +393 val_393 393 val_393 +394 val_394 394 val_394 +395 val_395 395 val_395 +395 val_395 395 val_395 +395 val_395 395 val_395 +395 val_395 395 val_395 +396 val_396 396 val_396 +396 val_396 396 val_396 +396 val_396 396 val_396 +396 val_396 396 val_396 +396 val_396 396 val_396 +396 val_396 396 val_396 +396 val_396 396 val_396 +396 val_396 396 val_396 +396 val_396 396 val_396 +397 val_397 397 val_397 +397 val_397 397 val_397 +397 val_397 397 val_397 +397 val_397 397 val_397 +399 val_399 399 val_399 +399 val_399 399 val_399 +399 val_399 399 val_399 +399 val_399 399 val_399 +4 val_4 4 val_4 +400 val_400 400 val_400 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +401 val_401 401 val_401 +402 val_402 402 val_402 +403 val_403 403 val_403 +403 val_403 403 val_403 +403 val_403 403 val_403 +403 val_403 403 val_403 +403 val_403 403 val_403 +403 val_403 403 val_403 +403 val_403 403 val_403 +403 val_403 403 val_403 +403 val_403 403 val_403 +404 val_404 404 val_404 +404 val_404 404 val_404 +404 val_404 404 val_404 +404 val_404 404 val_404 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +406 val_406 406 val_406 +407 val_407 407 val_407 +409 val_409 409 val_409 +409 val_409 409 val_409 +409 val_409 409 val_409 +409 val_409 409 val_409 +409 val_409 409 val_409 +409 val_409 409 val_409 +409 val_409 409 val_409 +409 val_409 409 val_409 +409 val_409 409 val_409 +41 val_41 41 val_41 +411 val_411 411 val_411 +413 val_413 413 val_413 +413 val_413 413 val_413 +413 val_413 413 val_413 +413 val_413 413 val_413 +414 val_414 414 val_414 +414 val_414 414 val_414 +414 val_414 414 val_414 +414 val_414 414 val_414 +417 val_417 417 val_417 +417 val_417 417 val_417 +417 val_417 417 val_417 +417 val_417 417 val_417 +417 val_417 417 val_417 +417 val_417 417 val_417 +417 val_417 417 val_417 +417 val_417 417 val_417 +417 val_417 417 val_417 +418 val_418 418 val_418 +419 val_419 419 val_419 +42 val_42 42 val_42 +42 val_42 42 val_42 +42 val_42 42 val_42 +42 val_42 42 val_42 +421 val_421 421 val_421 +424 val_424 424 val_424 +424 val_424 424 val_424 +424 val_424 424 val_424 +424 val_424 424 val_424 +427 val_427 427 val_427 +429 val_429 429 val_429 +429 val_429 429 val_429 +429 val_429 429 val_429 +429 val_429 429 val_429 +43 val_43 43 val_43 +430 val_430 430 val_430 +430 val_430 430 val_430 +430 val_430 430 val_430 +430 val_430 430 val_430 +430 val_430 430 val_430 +430 val_430 430 val_430 +430 val_430 430 val_430 +430 val_430 430 val_430 +430 val_430 430 val_430 +431 val_431 431 val_431 +431 val_431 431 val_431 +431 val_431 431 val_431 +431 val_431 431 val_431 +431 val_431 431 val_431 +431 val_431 431 val_431 +431 val_431 431 val_431 +431 val_431 431 val_431 +431 val_431 431 val_431 +432 val_432 432 val_432 +435 val_435 435 val_435 +436 val_436 436 val_436 +437 val_437 437 val_437 +438 val_438 438 val_438 +438 val_438 438 val_438 +438 val_438 438 val_438 +438 val_438 438 val_438 +438 val_438 438 val_438 +438 val_438 438 val_438 +438 val_438 438 val_438 +438 val_438 438 val_438 +438 val_438 438 val_438 +439 val_439 439 val_439 +439 val_439 439 val_439 +439 val_439 439 val_439 +439 val_439 439 val_439 +44 val_44 44 val_44 +443 val_443 443 val_443 +444 val_444 444 val_444 +446 val_446 446 val_446 +448 val_448 448 val_448 +449 val_449 449 val_449 +452 val_452 452 val_452 +453 val_453 453 val_453 +454 val_454 454 val_454 +454 val_454 454 val_454 +454 val_454 454 val_454 +454 val_454 454 val_454 +454 val_454 454 val_454 +454 val_454 454 val_454 +454 val_454 454 val_454 +454 val_454 454 val_454 +454 val_454 454 val_454 +455 val_455 455 val_455 +457 val_457 457 val_457 +458 val_458 458 val_458 +458 val_458 458 val_458 +458 val_458 458 val_458 +458 val_458 458 val_458 +459 val_459 459 val_459 +459 val_459 459 val_459 +459 val_459 459 val_459 +459 val_459 459 val_459 +460 val_460 460 val_460 +462 val_462 462 val_462 +462 val_462 462 val_462 +462 val_462 462 val_462 +462 val_462 462 val_462 +463 val_463 463 val_463 +463 val_463 463 val_463 +463 val_463 463 val_463 +463 val_463 463 val_463 +466 val_466 466 val_466 +466 val_466 466 val_466 +466 val_466 466 val_466 +466 val_466 466 val_466 +466 val_466 466 val_466 +466 val_466 466 val_466 +466 val_466 466 val_466 +466 val_466 466 val_466 +466 val_466 466 val_466 +467 val_467 467 val_467 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +468 val_468 468 val_468 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +469 val_469 469 val_469 +47 val_47 47 val_47 +470 val_470 470 val_470 +472 val_472 472 val_472 +475 val_475 475 val_475 +477 val_477 477 val_477 +478 val_478 478 val_478 +478 val_478 478 val_478 +478 val_478 478 val_478 +478 val_478 478 val_478 +479 val_479 479 val_479 +480 val_480 480 val_480 +480 val_480 480 val_480 +480 val_480 480 val_480 +480 val_480 480 val_480 +480 val_480 480 val_480 +480 val_480 480 val_480 +480 val_480 480 val_480 +480 val_480 480 val_480 +480 val_480 480 val_480 +481 val_481 481 val_481 +482 val_482 482 val_482 +483 val_483 483 val_483 +484 val_484 484 val_484 +485 val_485 485 val_485 +487 val_487 487 val_487 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +489 val_489 489 val_489 +490 val_490 490 val_490 +491 val_491 491 val_491 +492 val_492 492 val_492 +492 val_492 492 val_492 +492 val_492 492 val_492 +492 val_492 492 val_492 +493 val_493 493 val_493 +494 val_494 494 val_494 +495 val_495 495 val_495 +496 val_496 496 val_496 +497 val_497 497 val_497 +498 val_498 498 val_498 +498 val_498 498 val_498 +498 val_498 498 val_498 +498 val_498 498 val_498 +498 val_498 498 val_498 +498 val_498 498 val_498 +498 val_498 498 val_498 +498 val_498 498 val_498 +498 val_498 498 val_498 +5 val_5 5 val_5 +5 val_5 5 val_5 +5 val_5 5 val_5 +5 val_5 5 val_5 +5 val_5 5 val_5 +5 val_5 5 val_5 +5 val_5 5 val_5 +5 val_5 5 val_5 +5 val_5 5 val_5 +51 val_51 51 val_51 +51 val_51 51 val_51 +51 val_51 51 val_51 +51 val_51 51 val_51 +53 val_53 53 val_53 +54 val_54 54 val_54 +57 val_57 57 val_57 +58 val_58 58 val_58 +58 val_58 58 val_58 +58 val_58 58 val_58 +58 val_58 58 val_58 +64 val_64 64 val_64 +65 val_65 65 val_65 +66 val_66 66 val_66 +67 val_67 67 val_67 +67 val_67 67 val_67 +67 val_67 67 val_67 +67 val_67 67 val_67 +69 val_69 69 val_69 +70 val_70 70 val_70 +70 val_70 70 val_70 +70 val_70 70 val_70 +70 val_70 70 val_70 +70 val_70 70 val_70 +70 val_70 70 val_70 +70 val_70 70 val_70 +70 val_70 70 val_70 +70 val_70 70 val_70 +72 val_72 72 val_72 +72 val_72 72 val_72 +72 val_72 72 val_72 +72 val_72 72 val_72 +74 val_74 74 val_74 +76 val_76 76 val_76 +76 val_76 76 val_76 +76 val_76 76 val_76 +76 val_76 76 val_76 +77 val_77 77 val_77 +78 val_78 78 val_78 +8 val_8 8 val_8 +80 val_80 80 val_80 +82 val_82 82 val_82 +83 val_83 83 val_83 +83 val_83 83 val_83 +83 val_83 83 val_83 +83 val_83 83 val_83 +84 val_84 84 val_84 +84 val_84 84 val_84 +84 val_84 84 val_84 +84 val_84 84 val_84 +85 val_85 85 val_85 +86 val_86 86 val_86 +87 val_87 87 val_87 +9 val_9 9 val_9 +90 val_90 90 val_90 +90 val_90 90 val_90 +90 val_90 90 val_90 +90 val_90 90 val_90 +90 val_90 90 val_90 +90 val_90 90 val_90 +90 val_90 90 val_90 +90 val_90 90 val_90 +90 val_90 90 val_90 +92 val_92 92 val_92 +95 val_95 95 val_95 +95 val_95 95 val_95 +95 val_95 95 val_95 +95 val_95 95 val_95 +96 val_96 96 val_96 +97 val_97 97 val_97 +97 val_97 97 val_97 +97 val_97 97 val_97 +97 val_97 97 val_97 +98 val_98 98 val_98 +98 val_98 98 val_98 +98 val_98 98 val_98 +98 val_98 98 val_98 diff --git a/ql/src/test/results/clientpositive/perf/tpcds30tb/tez/cbo_query14.q.out b/ql/src/test/results/clientpositive/perf/tpcds30tb/tez/cbo_query14.q.out index c1e097652d87..b08d48b994da 100644 --- a/ql/src/test/results/clientpositive/perf/tpcds30tb/tez/cbo_query14.q.out +++ b/ql/src/test/results/clientpositive/perf/tpcds30tb/tez/cbo_query14.q.out @@ -1,6 +1,7 @@ -Warning: Map Join MAPJOIN[1133][bigTable=?] in task 'Reducer 2' is a cross product -Warning: Map Join MAPJOIN[1398][bigTable=?] in task 'Reducer 35' is a cross product -Warning: Map Join MAPJOIN[1492][bigTable=?] in task 'Reducer 42' is a cross product +Warning: Map Join MAPJOIN[1098][bigTable=?] in task 'Reducer 10' is a cross product +Warning: Map Join MAPJOIN[1147][bigTable=?] in task 'Reducer 15' is a cross product +Warning: Map Join MAPJOIN[1163][bigTable=?] in task 'Reducer 21' is a cross product +Warning: Map Join MAPJOIN[1199][bigTable=?] in task 'Reducer 30' is a cross product CBO PLAN: HiveSortLimit(sort0=[$0], sort1=[$1], sort2=[$2], sort3=[$3], dir0=[ASC], dir1=[ASC], dir2=[ASC], dir3=[ASC], fetch=[100]) HiveProject(channel=[$0], i_brand_id=[$1], i_class_id=[$2], i_category_id=[$3], $f4=[$4], $f5=[$5]) @@ -8,288 +9,228 @@ HiveSortLimit(sort0=[$0], sort1=[$1], sort2=[$2], sort3=[$3], dir0=[ASC], dir1=[ HiveProject(channel=[$0], i_brand_id=[$1], i_class_id=[$2], i_category_id=[$3], sales=[$4], number_sales=[$5]) HiveUnion(all=[true]) HiveProject(channel=[_UTF-16LE'store':VARCHAR(2147483647) CHARACTER SET "UTF-16LE"], i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], sales=[$3], number_sales=[$4]) - HiveJoin(condition=[>($3, $5)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveJoin(condition=[>($3, $6)], joinType=[inner], algorithm=[none], cost=[not available]) HiveProject($f0=[$0], $f1=[$1], $f2=[$2], $f3=[$3], $f4=[$4]) HiveFilter(condition=[IS NOT NULL($3)]) HiveAggregate(group=[{0, 1, 2}], agg#0=[sum($3)], agg#1=[count()]) - HiveProject($f0=[$13], $f1=[$14], $f2=[$15], $f3=[*(CAST($1):DECIMAL(10, 0), $2)]) - HiveJoin(condition=[=($0, $12)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[AND(=($6, $9), =($7, $10), =($8, $11))], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($0, $5)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($3, $4)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ss_item_sk=[$1], ss_quantity=[$9], ss_list_price=[$11], ss_sold_date_sk=[$22]) - HiveFilter(condition=[IS NOT NULL($22)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, store_sales]], table:alias=[store_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[AND(=($6, 2000), =($8, 11))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[date_dim]) - HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[item]) - HiveProject($f0=[$0], $f1=[$1], $f2=[$2]) - HiveFilter(condition=[=($3, 3)]) - HiveAggregate(group=[{0, 1, 2}], agg#0=[count($3)]) - HiveProject(brand_id=[$0], class_id=[$1], category_id=[$2], $f3=[$3]) - HiveUnion(all=[true]) + HiveProject($f0=[$8], $f1=[$9], $f2=[$10], $f3=[*(CAST($1):DECIMAL(10, 0), $2)]) + HiveJoin(condition=[=($0, $7)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveSemiJoin(condition=[=($0, $7)], joinType=[semi]) + HiveJoin(condition=[=($3, $4)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(ss_item_sk=[$1], ss_quantity=[$9], ss_list_price=[$11], ss_sold_date_sk=[$22]) + HiveFilter(condition=[IS NOT NULL($22)]) + HiveTableScan(table=[[default, store_sales]], table:alias=[store_sales]) + HiveProject(d_date_sk=[$0], d_year=[CAST(2000):INTEGER], d_moy=[CAST(11):INTEGER]) + HiveFilter(condition=[AND(=($6, 2000), =($8, 11))]) + HiveTableScan(table=[[default, date_dim]], table:alias=[date_dim]) + HiveProject(ss_item_sk=[$0]) + HiveJoin(condition=[AND(=($1, $4), =($2, $5), =($3, $6))], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) + HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) + HiveTableScan(table=[[default, item]], table:alias=[item]) + HiveProject($f0=[$0], $f1=[$1], $f2=[$2]) + HiveFilter(condition=[=($3, 3)]) + HiveAggregate(group=[{0, 1, 2}], agg#0=[count($3)]) HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) - HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) - HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ss_item_sk=[$1], ss_sold_date_sk=[$22]) - HiveFilter(condition=[IS NOT NULL($22)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, store_sales]], table:alias=[store_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[d1]) - HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[iss]) - HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) - HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) - HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(cs_item_sk=[$14], cs_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, catalog_sales]], table:alias=[catalog_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[d2]) - HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[ics]) - HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) - HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) - HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ws_item_sk=[$2], ws_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, web_sales]], table:alias=[web_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[d3]) - HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[iws]) + HiveUnion(all=[true]) + HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) + HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) + HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(ss_item_sk=[$1], ss_sold_date_sk=[$22]) + HiveFilter(condition=[IS NOT NULL($22)]) + HiveTableScan(table=[[default, store_sales]], table:alias=[store_sales]) + HiveProject(d_date_sk=[$0]) + HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) + HiveTableScan(table=[[default, date_dim]], table:alias=[d1]) + HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) + HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) + HiveTableScan(table=[[default, item]], table:alias=[iss]) + HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) + HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) + HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(cs_item_sk=[$14], cs_sold_date_sk=[$33]) + HiveFilter(condition=[IS NOT NULL($33)]) + HiveTableScan(table=[[default, catalog_sales]], table:alias=[catalog_sales]) + HiveProject(d_date_sk=[$0]) + HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) + HiveTableScan(table=[[default, date_dim]], table:alias=[d2]) + HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) + HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) + HiveTableScan(table=[[default, item]], table:alias=[ics]) + HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) + HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) + HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(ws_item_sk=[$2], ws_sold_date_sk=[$33]) + HiveFilter(condition=[IS NOT NULL($33)]) + HiveTableScan(table=[[default, web_sales]], table:alias=[web_sales]) + HiveProject(d_date_sk=[$0]) + HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) + HiveTableScan(table=[[default, date_dim]], table:alias=[d3]) + HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) + HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) + HiveTableScan(table=[[default, item]], table:alias=[iws]) HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[item]) - HiveProject($f0=[CAST(/($0, $1)):DECIMAL(22, 6)]) - HiveFilter(condition=[IS NOT NULL(CAST(/($0, $1)):DECIMAL(22, 6))]) - HiveProject($f0=[$0], $f1=[$1]) - HiveAggregate(group=[{}], agg#0=[sum($0)], agg#1=[count($0)]) - HiveProject($f0=[*(CAST($0):DECIMAL(10, 0), $1)]) - HiveUnion(all=[true]) - HiveProject(quantity=[$0], list_price=[$1]) - HiveJoin(condition=[=($2, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ss_quantity=[$9], ss_list_price=[$11], ss_sold_date_sk=[$22]) - HiveFilter(condition=[IS NOT NULL($22)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, store_sales]], table:alias=[store_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[date_dim]) - HiveProject(quantity=[$0], list_price=[$1]) - HiveJoin(condition=[=($2, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(cs_quantity=[$17], cs_list_price=[$19], cs_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, catalog_sales]], table:alias=[catalog_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1998, 2000)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[date_dim]) - HiveProject(quantity=[$0], list_price=[$1]) - HiveJoin(condition=[=($2, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ws_quantity=[$17], ws_list_price=[$19], ws_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, web_sales]], table:alias=[web_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1998, 2000)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[date_dim]) + HiveTableScan(table=[[default, item]], table:alias=[item]) + HiveJoin(condition=[true], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(cnt=[$0]) + HiveFilter(condition=[sq_count_check($0)]) + HiveProject(cnt=[$0]) + HiveAggregate(group=[{}], cnt=[COUNT()]) + HiveTableScan(table=[[default, avg_sales]], table:alias=[avg_sales]) + HiveProject(average_sales=[$0]) + HiveFilter(condition=[IS NOT NULL($0)]) + HiveTableScan(table=[[default, avg_sales]], table:alias=[avg_sales]) HiveProject(channel=[_UTF-16LE'catalog':VARCHAR(2147483647) CHARACTER SET "UTF-16LE"], i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], sales=[$3], number_sales=[$4]) - HiveJoin(condition=[>($3, $5)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveJoin(condition=[>($3, $6)], joinType=[inner], algorithm=[none], cost=[not available]) HiveProject($f0=[$0], $f1=[$1], $f2=[$2], $f3=[$3], $f4=[$4]) HiveFilter(condition=[IS NOT NULL($3)]) HiveAggregate(group=[{0, 1, 2}], agg#0=[sum($3)], agg#1=[count()]) - HiveProject($f0=[$13], $f1=[$14], $f2=[$15], $f3=[*(CAST($1):DECIMAL(10, 0), $2)]) - HiveJoin(condition=[=($0, $12)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[AND(=($6, $9), =($7, $10), =($8, $11))], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($0, $5)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($3, $4)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(cs_item_sk=[$14], cs_quantity=[$17], cs_list_price=[$19], cs_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, catalog_sales]], table:alias=[catalog_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[AND(=($6, 2000), =($8, 11))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[date_dim]) - HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[item]) - HiveProject($f0=[$0], $f1=[$1], $f2=[$2]) - HiveFilter(condition=[=($3, 3)]) - HiveAggregate(group=[{0, 1, 2}], agg#0=[count($3)]) - HiveProject(brand_id=[$0], class_id=[$1], category_id=[$2], $f3=[$3]) - HiveUnion(all=[true]) - HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) - HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) - HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ss_item_sk=[$1], ss_sold_date_sk=[$22]) - HiveFilter(condition=[IS NOT NULL($22)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, store_sales]], table:alias=[store_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[d1]) - HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[iss]) + HiveProject($f0=[$8], $f1=[$9], $f2=[$10], $f3=[*(CAST($1):DECIMAL(10, 0), $2)]) + HiveJoin(condition=[=($0, $7)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveSemiJoin(condition=[=($0, $7)], joinType=[semi]) + HiveJoin(condition=[=($3, $4)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(cs_item_sk=[$14], cs_quantity=[$17], cs_list_price=[$19], cs_sold_date_sk=[$33]) + HiveFilter(condition=[IS NOT NULL($33)]) + HiveTableScan(table=[[default, catalog_sales]], table:alias=[catalog_sales]) + HiveProject(d_date_sk=[$0], d_year=[CAST(2000):INTEGER], d_moy=[CAST(11):INTEGER]) + HiveFilter(condition=[AND(=($6, 2000), =($8, 11))]) + HiveTableScan(table=[[default, date_dim]], table:alias=[date_dim]) + HiveProject(ss_item_sk=[$0]) + HiveJoin(condition=[AND(=($1, $4), =($2, $5), =($3, $6))], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) + HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) + HiveTableScan(table=[[default, item]], table:alias=[item]) + HiveProject($f0=[$0], $f1=[$1], $f2=[$2]) + HiveFilter(condition=[=($3, 3)]) + HiveAggregate(group=[{0, 1, 2}], agg#0=[count($3)]) HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) - HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) - HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(cs_item_sk=[$14], cs_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, catalog_sales]], table:alias=[catalog_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[d2]) - HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[ics]) - HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) - HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) - HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ws_item_sk=[$2], ws_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, web_sales]], table:alias=[web_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[d3]) - HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[iws]) + HiveUnion(all=[true]) + HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) + HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) + HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(ss_item_sk=[$1], ss_sold_date_sk=[$22]) + HiveFilter(condition=[IS NOT NULL($22)]) + HiveTableScan(table=[[default, store_sales]], table:alias=[store_sales]) + HiveProject(d_date_sk=[$0]) + HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) + HiveTableScan(table=[[default, date_dim]], table:alias=[d1]) + HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) + HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) + HiveTableScan(table=[[default, item]], table:alias=[iss]) + HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) + HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) + HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(cs_item_sk=[$14], cs_sold_date_sk=[$33]) + HiveFilter(condition=[IS NOT NULL($33)]) + HiveTableScan(table=[[default, catalog_sales]], table:alias=[catalog_sales]) + HiveProject(d_date_sk=[$0]) + HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) + HiveTableScan(table=[[default, date_dim]], table:alias=[d2]) + HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) + HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) + HiveTableScan(table=[[default, item]], table:alias=[ics]) + HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) + HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) + HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(ws_item_sk=[$2], ws_sold_date_sk=[$33]) + HiveFilter(condition=[IS NOT NULL($33)]) + HiveTableScan(table=[[default, web_sales]], table:alias=[web_sales]) + HiveProject(d_date_sk=[$0]) + HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) + HiveTableScan(table=[[default, date_dim]], table:alias=[d3]) + HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) + HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) + HiveTableScan(table=[[default, item]], table:alias=[iws]) HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[item]) - HiveProject($f0=[CAST(/($0, $1)):DECIMAL(22, 6)]) - HiveFilter(condition=[IS NOT NULL(CAST(/($0, $1)):DECIMAL(22, 6))]) - HiveProject($f0=[$0], $f1=[$1]) - HiveAggregate(group=[{}], agg#0=[sum($0)], agg#1=[count($0)]) - HiveProject($f0=[*(CAST($0):DECIMAL(10, 0), $1)]) - HiveUnion(all=[true]) - HiveProject(quantity=[$0], list_price=[$1]) - HiveJoin(condition=[=($2, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ss_quantity=[$9], ss_list_price=[$11], ss_sold_date_sk=[$22]) - HiveFilter(condition=[IS NOT NULL($22)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, store_sales]], table:alias=[store_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[date_dim]) - HiveProject(quantity=[$0], list_price=[$1]) - HiveJoin(condition=[=($2, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(cs_quantity=[$17], cs_list_price=[$19], cs_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, catalog_sales]], table:alias=[catalog_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1998, 2000)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[date_dim]) - HiveProject(quantity=[$0], list_price=[$1]) - HiveJoin(condition=[=($2, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ws_quantity=[$17], ws_list_price=[$19], ws_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, web_sales]], table:alias=[web_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1998, 2000)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[date_dim]) + HiveTableScan(table=[[default, item]], table:alias=[item]) + HiveJoin(condition=[true], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(cnt=[$0]) + HiveFilter(condition=[sq_count_check($0)]) + HiveProject(cnt=[$0]) + HiveAggregate(group=[{}], cnt=[COUNT()]) + HiveTableScan(table=[[default, avg_sales]], table:alias=[avg_sales]) + HiveProject(average_sales=[$0]) + HiveFilter(condition=[IS NOT NULL($0)]) + HiveTableScan(table=[[default, avg_sales]], table:alias=[avg_sales]) HiveProject(channel=[_UTF-16LE'web':VARCHAR(2147483647) CHARACTER SET "UTF-16LE"], i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], sales=[$3], number_sales=[$4]) - HiveJoin(condition=[>($3, $5)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveJoin(condition=[>($3, $6)], joinType=[inner], algorithm=[none], cost=[not available]) HiveProject($f0=[$0], $f1=[$1], $f2=[$2], $f3=[$3], $f4=[$4]) HiveFilter(condition=[IS NOT NULL($3)]) HiveAggregate(group=[{0, 1, 2}], agg#0=[sum($3)], agg#1=[count()]) - HiveProject($f0=[$13], $f1=[$14], $f2=[$15], $f3=[*(CAST($1):DECIMAL(10, 0), $2)]) - HiveJoin(condition=[=($0, $12)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[AND(=($6, $9), =($7, $10), =($8, $11))], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($0, $5)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($3, $4)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ws_item_sk=[$2], ws_quantity=[$17], ws_list_price=[$19], ws_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, web_sales]], table:alias=[web_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[AND(=($6, 2000), =($8, 11))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[date_dim]) - HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[item]) - HiveProject($f0=[$0], $f1=[$1], $f2=[$2]) - HiveFilter(condition=[=($3, 3)]) - HiveAggregate(group=[{0, 1, 2}], agg#0=[count($3)]) - HiveProject(brand_id=[$0], class_id=[$1], category_id=[$2], $f3=[$3]) - HiveUnion(all=[true]) - HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) - HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) - HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ss_item_sk=[$1], ss_sold_date_sk=[$22]) - HiveFilter(condition=[IS NOT NULL($22)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, store_sales]], table:alias=[store_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[d1]) - HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[iss]) - HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) - HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) - HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(cs_item_sk=[$14], cs_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, catalog_sales]], table:alias=[catalog_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[d2]) - HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[ics]) + HiveProject($f0=[$8], $f1=[$9], $f2=[$10], $f3=[*(CAST($1):DECIMAL(10, 0), $2)]) + HiveJoin(condition=[=($0, $7)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveSemiJoin(condition=[=($0, $7)], joinType=[semi]) + HiveJoin(condition=[=($3, $4)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(ws_item_sk=[$2], ws_quantity=[$17], ws_list_price=[$19], ws_sold_date_sk=[$33]) + HiveFilter(condition=[IS NOT NULL($33)]) + HiveTableScan(table=[[default, web_sales]], table:alias=[web_sales]) + HiveProject(d_date_sk=[$0], d_year=[CAST(2000):INTEGER], d_moy=[CAST(11):INTEGER]) + HiveFilter(condition=[AND(=($6, 2000), =($8, 11))]) + HiveTableScan(table=[[default, date_dim]], table:alias=[date_dim]) + HiveProject(ss_item_sk=[$0]) + HiveJoin(condition=[AND(=($1, $4), =($2, $5), =($3, $6))], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) + HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) + HiveTableScan(table=[[default, item]], table:alias=[item]) + HiveProject($f0=[$0], $f1=[$1], $f2=[$2]) + HiveFilter(condition=[=($3, 3)]) + HiveAggregate(group=[{0, 1, 2}], agg#0=[count($3)]) HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) - HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) - HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ws_item_sk=[$2], ws_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, web_sales]], table:alias=[web_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[d3]) - HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[iws]) + HiveUnion(all=[true]) + HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) + HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) + HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(ss_item_sk=[$1], ss_sold_date_sk=[$22]) + HiveFilter(condition=[IS NOT NULL($22)]) + HiveTableScan(table=[[default, store_sales]], table:alias=[store_sales]) + HiveProject(d_date_sk=[$0]) + HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) + HiveTableScan(table=[[default, date_dim]], table:alias=[d1]) + HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) + HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) + HiveTableScan(table=[[default, item]], table:alias=[iss]) + HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) + HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) + HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(cs_item_sk=[$14], cs_sold_date_sk=[$33]) + HiveFilter(condition=[IS NOT NULL($33)]) + HiveTableScan(table=[[default, catalog_sales]], table:alias=[catalog_sales]) + HiveProject(d_date_sk=[$0]) + HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) + HiveTableScan(table=[[default, date_dim]], table:alias=[d2]) + HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) + HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) + HiveTableScan(table=[[default, item]], table:alias=[ics]) + HiveProject(i_brand_id=[$0], i_class_id=[$1], i_category_id=[$2], $f3=[$3]) + HiveAggregate(group=[{4, 5, 6}], agg#0=[count()]) + HiveJoin(condition=[=($0, $3)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveJoin(condition=[=($1, $2)], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(ws_item_sk=[$2], ws_sold_date_sk=[$33]) + HiveFilter(condition=[IS NOT NULL($33)]) + HiveTableScan(table=[[default, web_sales]], table:alias=[web_sales]) + HiveProject(d_date_sk=[$0]) + HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) + HiveTableScan(table=[[default, date_dim]], table:alias=[d3]) + HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) + HiveFilter(condition=[AND(IS NOT NULL($11), IS NOT NULL($7), IS NOT NULL($9))]) + HiveTableScan(table=[[default, item]], table:alias=[iws]) HiveProject(i_item_sk=[$0], i_brand_id=[$7], i_class_id=[$9], i_category_id=[$11]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, item]], table:alias=[item]) - HiveProject($f0=[CAST(/($0, $1)):DECIMAL(22, 6)]) - HiveFilter(condition=[IS NOT NULL(CAST(/($0, $1)):DECIMAL(22, 6))]) - HiveProject($f0=[$0], $f1=[$1]) - HiveAggregate(group=[{}], agg#0=[sum($0)], agg#1=[count($0)]) - HiveProject($f0=[*(CAST($0):DECIMAL(10, 0), $1)]) - HiveUnion(all=[true]) - HiveProject(quantity=[$0], list_price=[$1]) - HiveJoin(condition=[=($2, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ss_quantity=[$9], ss_list_price=[$11], ss_sold_date_sk=[$22]) - HiveFilter(condition=[IS NOT NULL($22)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, store_sales]], table:alias=[store_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1999, 2001)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[date_dim]) - HiveProject(quantity=[$0], list_price=[$1]) - HiveJoin(condition=[=($2, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(cs_quantity=[$17], cs_list_price=[$19], cs_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, catalog_sales]], table:alias=[catalog_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1998, 2000)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[date_dim]) - HiveProject(quantity=[$0], list_price=[$1]) - HiveJoin(condition=[=($2, $3)], joinType=[inner], algorithm=[none], cost=[not available]) - HiveProject(ws_quantity=[$17], ws_list_price=[$19], ws_sold_date_sk=[$33]) - HiveFilter(condition=[IS NOT NULL($33)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, web_sales]], table:alias=[web_sales]) - HiveProject(d_date_sk=[$0]) - HiveFilter(condition=[BETWEEN(false, $6, 1998, 2000)]) - HiveTableScan(table=[[tpcds_bin_partitioned_orc_30000, date_dim]], table:alias=[date_dim]) + HiveTableScan(table=[[default, item]], table:alias=[item]) + HiveJoin(condition=[true], joinType=[inner], algorithm=[none], cost=[not available]) + HiveProject(cnt=[$0]) + HiveFilter(condition=[sq_count_check($0)]) + HiveProject(cnt=[$0]) + HiveAggregate(group=[{}], cnt=[COUNT()]) + HiveTableScan(table=[[default, avg_sales]], table:alias=[avg_sales]) + HiveProject(average_sales=[$0]) + HiveFilter(condition=[IS NOT NULL($0)]) + HiveTableScan(table=[[default, avg_sales]], table:alias=[avg_sales]) diff --git a/ql/src/test/results/clientpositive/perf/tpcds30tb/tez/query14.q.out b/ql/src/test/results/clientpositive/perf/tpcds30tb/tez/query14.q.out index bec076e30e28..bb13c5391871 100644 --- a/ql/src/test/results/clientpositive/perf/tpcds30tb/tez/query14.q.out +++ b/ql/src/test/results/clientpositive/perf/tpcds30tb/tez/query14.q.out @@ -1,582 +1,1247 @@ -Warning: Map Join MAPJOIN[1133][bigTable=?] in task 'Reducer 2' is a cross product -Warning: Map Join MAPJOIN[1398][bigTable=?] in task 'Reducer 35' is a cross product -Warning: Map Join MAPJOIN[1492][bigTable=?] in task 'Reducer 42' is a cross product -Plan optimized by CBO. +Warning: Map Join MAPJOIN[1098][bigTable=?] in task 'Reducer 10' is a cross product +Warning: Map Join MAPJOIN[1147][bigTable=?] in task 'Reducer 15' is a cross product +Warning: Map Join MAPJOIN[1163][bigTable=?] in task 'Reducer 21' is a cross product +Warning: Map Join MAPJOIN[1199][bigTable=?] in task 'Reducer 30' is a cross product +STAGE DEPENDENCIES: + Stage-1 is a root stage + Stage-2 depends on stages: Stage-1 + Stage-4 depends on stages: Stage-2, Stage-0 + Stage-0 depends on stages: Stage-1 + Stage-3 depends on stages: Stage-4 -Vertex dependency in root stage -Map 1 <- Map 26 (BROADCAST_EDGE), Map 6 (BROADCAST_EDGE), Map 7 (BROADCAST_EDGE), Reducer 11 (BROADCAST_EDGE) -Map 18 <- Map 6 (BROADCAST_EDGE), Map 7 (BROADCAST_EDGE) -Map 22 <- Map 6 (BROADCAST_EDGE), Map 7 (BROADCAST_EDGE) -Map 27 <- Map 6 (BROADCAST_EDGE), Union 28 (CONTAINS) -Map 30 <- Map 31 (BROADCAST_EDGE), Union 28 (CONTAINS) -Map 32 <- Map 33 (BROADCAST_EDGE), Union 28 (CONTAINS) -Map 34 <- Map 26 (BROADCAST_EDGE), Map 6 (BROADCAST_EDGE), Map 7 (BROADCAST_EDGE), Reducer 14 (BROADCAST_EDGE) -Map 36 <- Map 6 (BROADCAST_EDGE), Union 37 (CONTAINS) -Map 39 <- Map 31 (BROADCAST_EDGE), Union 37 (CONTAINS) -Map 40 <- Map 33 (BROADCAST_EDGE), Union 37 (CONTAINS) -Map 41 <- Map 26 (BROADCAST_EDGE), Map 6 (BROADCAST_EDGE), Map 7 (BROADCAST_EDGE), Reducer 17 (BROADCAST_EDGE) -Map 43 <- Map 6 (BROADCAST_EDGE), Union 44 (CONTAINS) -Map 46 <- Map 31 (BROADCAST_EDGE), Union 44 (CONTAINS) -Map 47 <- Map 33 (BROADCAST_EDGE), Union 44 (CONTAINS) -Map 8 <- Map 6 (BROADCAST_EDGE), Map 7 (BROADCAST_EDGE) -Reducer 11 <- Union 10 (SIMPLE_EDGE) -Reducer 12 <- Map 8 (SIMPLE_EDGE), Union 13 (CONTAINS) -Reducer 14 <- Union 13 (SIMPLE_EDGE) -Reducer 15 <- Map 8 (SIMPLE_EDGE), Union 16 (CONTAINS) -Reducer 17 <- Union 16 (SIMPLE_EDGE) -Reducer 19 <- Map 18 (SIMPLE_EDGE), Union 10 (CONTAINS) -Reducer 2 <- Map 1 (SIMPLE_EDGE), Reducer 29 (BROADCAST_EDGE), Union 3 (CONTAINS) -Reducer 20 <- Map 18 (SIMPLE_EDGE), Union 13 (CONTAINS) -Reducer 21 <- Map 18 (SIMPLE_EDGE), Union 16 (CONTAINS) -Reducer 23 <- Map 22 (SIMPLE_EDGE), Union 10 (CONTAINS) -Reducer 24 <- Map 22 (SIMPLE_EDGE), Union 13 (CONTAINS) -Reducer 25 <- Map 22 (SIMPLE_EDGE), Union 16 (CONTAINS) -Reducer 29 <- Union 28 (CUSTOM_SIMPLE_EDGE) -Reducer 35 <- Map 34 (SIMPLE_EDGE), Reducer 38 (BROADCAST_EDGE), Union 3 (CONTAINS) -Reducer 38 <- Union 37 (CUSTOM_SIMPLE_EDGE) -Reducer 4 <- Union 3 (SIMPLE_EDGE) -Reducer 42 <- Map 41 (SIMPLE_EDGE), Reducer 45 (BROADCAST_EDGE), Union 3 (CONTAINS) -Reducer 45 <- Union 44 (CUSTOM_SIMPLE_EDGE) -Reducer 5 <- Reducer 4 (SIMPLE_EDGE) -Reducer 9 <- Map 8 (SIMPLE_EDGE), Union 10 (CONTAINS) +STAGE PLANS: + Stage: Stage-1 + Tez +#### A masked pattern was here #### + Edges: + Map 1 <- Map 4 (BROADCAST_EDGE), Union 2 (CONTAINS) + Map 7 <- Reducer 5 (BROADCAST_EDGE), Union 2 (CONTAINS) + Map 8 <- Reducer 6 (BROADCAST_EDGE), Union 2 (CONTAINS) + Reducer 3 <- Union 2 (CUSTOM_SIMPLE_EDGE) + Reducer 5 <- Map 4 (SIMPLE_EDGE) + Reducer 6 <- Map 4 (SIMPLE_EDGE) +#### A masked pattern was here #### + Vertices: + Map 1 + Map Operator Tree: + TableScan + alias: store_sales + filterExpr: ss_sold_date_sk is not null (type: boolean) + Statistics: Num rows: 82510879939 Data size: 10005709976020 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: ss_quantity (type: int), ss_list_price (type: decimal(7,2)), ss_sold_date_sk (type: bigint) + outputColumnNames: _col0, _col1, _col2 + Statistics: Num rows: 82510879939 Data size: 10005709976020 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col2 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col0, _col1 + input vertices: + 1 Map 4 + Statistics: Num rows: 49749852010 Data size: 5545343696744 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: (CAST( _col0 AS decimal(10,0)) * _col1) (type: decimal(18,2)) + outputColumnNames: _col0 + Statistics: Num rows: 88516906238 Data size: 10029566262388 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + aggregations: sum(_col0), count(_col0) + minReductionHashAggr: 0.99 + mode: hash + outputColumnNames: _col0, _col1 + Statistics: Num rows: 1 Data size: 120 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + null sort order: + sort order: + Statistics: Num rows: 1 Data size: 120 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col0 (type: decimal(28,2)), _col1 (type: bigint) + Execution mode: vectorized, llap + LLAP IO: may be used (ACID table) + Map 4 + Map Operator Tree: + TableScan + alias: date_dim + filterExpr: (d_year BETWEEN 1999 AND 2001 or d_year BETWEEN 1998 AND 2000) (type: boolean) + Statistics: Num rows: 73049 Data size: 876588 Basic stats: COMPLETE Column stats: COMPLETE + Filter Operator + predicate: d_year BETWEEN 1999 AND 2001 (type: boolean) + Statistics: Num rows: 1101 Data size: 13212 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: d_date_sk (type: bigint) + outputColumnNames: _col0 + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: _col0 (type: bigint) + outputColumnNames: _col0 + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + keys: _col0 (type: bigint) + minReductionHashAggr: 0.4 + mode: hash + outputColumnNames: _col0 + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Dynamic Partitioning Event Operator + Target column: ss_sold_date_sk (bigint) + Target Input: store_sales + Partition key expr: ss_sold_date_sk + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Target Vertex: Map 1 + Filter Operator + predicate: d_year BETWEEN 1998 AND 2000 (type: boolean) + Statistics: Num rows: 1101 Data size: 13212 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: d_date_sk (type: bigint) + outputColumnNames: _col0 + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: _col0 (type: bigint) + outputColumnNames: _col0 + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + keys: _col0 (type: bigint) + minReductionHashAggr: 0.4 + mode: hash + outputColumnNames: _col0 + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Dynamic Partitioning Event Operator + Target column: cs_sold_date_sk (bigint) + Target Input: catalog_sales + Partition key expr: cs_sold_date_sk + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Target Vertex: Map 7 + Dynamic Partitioning Event Operator + Target column: ws_sold_date_sk (bigint) + Target Input: web_sales + Partition key expr: ws_sold_date_sk + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Target Vertex: Map 8 + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Execution mode: vectorized, llap + LLAP IO: may be used (ACID table) + Map 7 + Map Operator Tree: + TableScan + alias: catalog_sales + filterExpr: cs_sold_date_sk is not null (type: boolean) + Statistics: Num rows: 43005109025 Data size: 5320191433036 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: cs_quantity (type: int), cs_list_price (type: decimal(7,2)), cs_sold_date_sk (type: bigint) + outputColumnNames: _col0, _col1, _col2 + Statistics: Num rows: 43005109025 Data size: 5320191433036 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col2 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col0, _col1 + input vertices: + 1 Reducer 5 + Statistics: Num rows: 25746588712 Data size: 2974162204528 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: (CAST( _col0 AS decimal(10,0)) * _col1) (type: decimal(18,2)) + outputColumnNames: _col0 + Statistics: Num rows: 88516906238 Data size: 10029566262388 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + aggregations: sum(_col0), count(_col0) + minReductionHashAggr: 0.99 + mode: hash + outputColumnNames: _col0, _col1 + Statistics: Num rows: 1 Data size: 120 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + null sort order: + sort order: + Statistics: Num rows: 1 Data size: 120 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col0 (type: decimal(28,2)), _col1 (type: bigint) + Execution mode: vectorized, llap + LLAP IO: may be used (ACID table) + Map 8 + Map Operator Tree: + TableScan + alias: web_sales + filterExpr: ws_sold_date_sk is not null (type: boolean) + Statistics: Num rows: 21594638446 Data size: 2677421528564 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: ws_quantity (type: int), ws_list_price (type: decimal(7,2)), ws_sold_date_sk (type: bigint) + outputColumnNames: _col0, _col1, _col2 + Statistics: Num rows: 21594638446 Data size: 2677421528564 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col2 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col0, _col1 + input vertices: + 1 Reducer 6 + Statistics: Num rows: 13020465516 Data size: 1510060361116 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: (CAST( _col0 AS decimal(10,0)) * _col1) (type: decimal(18,2)) + outputColumnNames: _col0 + Statistics: Num rows: 88516906238 Data size: 10029566262388 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + aggregations: sum(_col0), count(_col0) + minReductionHashAggr: 0.99 + mode: hash + outputColumnNames: _col0, _col1 + Statistics: Num rows: 1 Data size: 120 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + null sort order: + sort order: + Statistics: Num rows: 1 Data size: 120 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col0 (type: decimal(28,2)), _col1 (type: bigint) + Execution mode: vectorized, llap + LLAP IO: may be used (ACID table) + Reducer 3 + Execution mode: vectorized, llap + Reduce Operator Tree: + Group By Operator + aggregations: sum(VALUE._col0), count(VALUE._col1) + mode: mergepartial + outputColumnNames: _col0, _col1 + Statistics: Num rows: 1 Data size: 120 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: CAST( (_col0 / _col1) AS decimal(22,6)) (type: decimal(22,6)) + outputColumnNames: _col0 + Statistics: Num rows: 1 Data size: 112 Basic stats: COMPLETE Column stats: COMPLETE + File Output Operator + compressed: false + Statistics: Num rows: 1 Data size: 112 Basic stats: COMPLETE Column stats: COMPLETE + table: + input format: org.apache.hadoop.hive.ql.io.orc.OrcInputFormat + output format: org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat + serde: org.apache.hadoop.hive.ql.io.orc.OrcSerde + name: default.avg_sales + Reducer 5 + Execution mode: vectorized, llap + Reduce Operator Tree: + Select Operator + expressions: KEY.reducesinkkey0 (type: bigint) + outputColumnNames: _col0 + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Reducer 6 + Execution mode: vectorized, llap + Reduce Operator Tree: + Select Operator + expressions: KEY.reducesinkkey0 (type: bigint) + outputColumnNames: _col0 + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Union 2 + Vertex: Union 2 -Stage-0 - Fetch Operator - limit:100 - Stage-1 - Reducer 5 vectorized, llap - File Output Operator [FS_1649] - Limit [LIM_1648] (rows=100 width=223) - Number of rows:100 - Select Operator [SEL_1647] (rows=398760 width=222) - Output:["_col0","_col1","_col2","_col3","_col4","_col5"] - <-Reducer 4 [SIMPLE_EDGE] vectorized, llap - SHUFFLE [RS_1646] - Select Operator [SEL_1645] (rows=398760 width=222) - Output:["_col0","_col1","_col2","_col3","_col4","_col5"] - Group By Operator [GBY_1644] (rows=398760 width=230) - Output:["_col0","_col1","_col2","_col3","_col5","_col6"],aggregations:["sum(VALUE._col0)","sum(VALUE._col1)"],keys:KEY._col0, KEY._col1, KEY._col2, KEY._col3, KEY._col4 - <-Union 3 [SIMPLE_EDGE] - <-Reducer 2 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1643] - PartitionCols:_col0, _col1, _col2, _col3, _col4 - Group By Operator [GBY_1642] (rows=398760 width=230) - Output:["_col0","_col1","_col2","_col3","_col4","_col5","_col6"],aggregations:["sum(_col4)","sum(_col5)"],keys:_col0, _col1, _col2, _col3, 0L - Top N Key Operator [TNK_1641] (rows=159504 width=221) - keys:_col0, _col1, _col2, _col3,top n:100 - Select Operator [SEL_1640] (rows=60027 width=220) - Output:["_col0","_col1","_col2","_col3","_col4","_col5"] - Filter Operator [FIL_1639] (rows=60027 width=243) - predicate:(_col3 > _col5) - Map Join Operator [MAPJOIN_1638] (rows=180081 width=243) - Conds:(Inner),Output:["_col0","_col1","_col2","_col3","_col4","_col5"] - <-Reducer 29 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1635] - Select Operator [SEL_1634] (rows=1 width=112) - Output:["_col0"] - Filter Operator [FIL_1633] (rows=1 width=120) - predicate:CAST( (_col0 / _col1) AS decimal(22,6)) is not null - Group By Operator [GBY_1632] (rows=1 width=120) - Output:["_col0","_col1"],aggregations:["sum(VALUE._col0)","count(VALUE._col1)"] - <-Union 28 [CUSTOM_SIMPLE_EDGE] - <-Map 27 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1702] - Group By Operator [GBY_1701] (rows=1 width=120) - Output:["_col0","_col1"],aggregations:["sum(_col0)","count(_col0)"] - Select Operator [SEL_1700] (rows=88516906238 width=113) - Output:["_col0"] - Map Join Operator [MAPJOIN_1699] (rows=49749852010 width=111) - Conds:SEL_1698._col2=RS_1584._col0(Inner),Output:["_col0","_col1"] - <-Map 6 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1584] - PartitionCols:_col0 - Select Operator [SEL_1571] (rows=1101 width=8) - Output:["_col0"] - Filter Operator [FIL_1569] (rows=1101 width=12) - predicate:d_year BETWEEN 1999 AND 2001 - TableScan [TS_3] (rows=73049 width=16) - tpcds_bin_partitioned_orc_30000@date_dim,date_dim, ACID table,Tbl:COMPLETE,Col:COMPLETE,Output:["d_date_sk","d_year","d_moy"] - <-Select Operator [SEL_1698] (rows=82510879939 width=121) - Output:["_col0","_col1","_col2"] - TableScan [TS_1311] (rows=82510879939 width=121) - Output:["ss_quantity","ss_list_price"] - <-Map 30 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1721] - Group By Operator [GBY_1720] (rows=1 width=120) - Output:["_col0","_col1"],aggregations:["sum(_col0)","count(_col0)"] - Select Operator [SEL_1719] (rows=88516906238 width=113) - Output:["_col0"] - Map Join Operator [MAPJOIN_1718] (rows=25746588712 width=115) - Conds:SEL_1717._col2=RS_1705._col0(Inner),Output:["_col0","_col1"] - <-Map 31 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1705] - PartitionCols:_col0 - Select Operator [SEL_1704] (rows=1101 width=8) - Output:["_col0"] - Filter Operator [FIL_1703] (rows=1101 width=12) - predicate:d_year BETWEEN 1998 AND 2000 - TableScan [TS_111] (rows=73049 width=12) - tpcds_bin_partitioned_orc_30000@date_dim,date_dim, ACID table,Tbl:COMPLETE,Col:COMPLETE,Output:["d_date_sk","d_year"] - <-Select Operator [SEL_1717] (rows=43005109025 width=123) - Output:["_col0","_col1","_col2"] - TableScan [TS_1334] (rows=43005109025 width=123) - Output:["cs_quantity","cs_list_price"] - <-Map 32 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1740] - Group By Operator [GBY_1739] (rows=1 width=120) - Output:["_col0","_col1"],aggregations:["sum(_col0)","count(_col0)"] - Select Operator [SEL_1738] (rows=88516906238 width=113) - Output:["_col0"] - Map Join Operator [MAPJOIN_1737] (rows=13020465516 width=115) - Conds:SEL_1736._col2=RS_1724._col0(Inner),Output:["_col0","_col1"] - <-Map 33 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1724] - PartitionCols:_col0 - Select Operator [SEL_1723] (rows=1101 width=8) - Output:["_col0"] - Filter Operator [FIL_1722] (rows=1101 width=12) - predicate:d_year BETWEEN 1998 AND 2000 - TableScan [TS_122] (rows=73049 width=12) - tpcds_bin_partitioned_orc_30000@date_dim,date_dim, ACID table,Tbl:COMPLETE,Col:COMPLETE,Output:["d_date_sk","d_year"] - <-Select Operator [SEL_1736] (rows=21594638446 width=123) - Output:["_col0","_col1","_col2"] - TableScan [TS_1357] (rows=21594638446 width=123) - Output:["ws_quantity","ws_list_price"] - <-Filter Operator [FIL_1637] (rows=180081 width=131) - predicate:_col3 is not null - Group By Operator [GBY_1636] (rows=180081 width=131) - Output:["_col0","_col1","_col2","_col3","_col4"],aggregations:["sum(VALUE._col0)","count(VALUE._col1)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Map 1 [SIMPLE_EDGE] vectorized, llap - SHUFFLE [RS_1631] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1630] (rows=180081 width=131) - Output:["_col0","_col1","_col2","_col3","_col4"],aggregations:["sum(_col3)","count()"],keys:_col0, _col1, _col2 - Select Operator [SEL_1629] (rows=1445421 width=11) - Output:["_col0","_col1","_col2","_col3"] - Map Join Operator [MAPJOIN_1628] (rows=1445421 width=11) - Conds:MAPJOIN_1627._col0=RS_1621._col0(Inner),Output:["_col1","_col2","_col13","_col14","_col15"] - <-Map 26 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1621] - PartitionCols:_col0 - Select Operator [SEL_1620] (rows=462000 width=19) - Output:["_col0","_col1","_col2","_col3"] - TableScan [TS_77] (rows=462000 width=19) - tpcds_bin_partitioned_orc_30000@item,item, ACID table,Tbl:COMPLETE,Col:COMPLETE,Output:["i_item_sk","i_brand_id","i_class_id","i_category_id"] - <-Map Join Operator [MAPJOIN_1627] (rows=1445421 width=8) - Conds:MAPJOIN_1626._col6, _col7, _col8=RS_1619._col0, _col1, _col2(Inner),Output:["_col0","_col1","_col2"] - <-Reducer 11 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1619] - PartitionCols:_col0, _col1, _col2 - Select Operator [SEL_1618] (rows=1 width=12) - Output:["_col0","_col1","_col2"] - Filter Operator [FIL_1617] (rows=1 width=20) - predicate:(_col3 = 3L) - Group By Operator [GBY_1616] (rows=153920 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(VALUE._col0)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Union 10 [SIMPLE_EDGE] - <-Reducer 19 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1675] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1674] (rows=153920 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(_col3)"],keys:_col0, _col1, _col2 - Group By Operator [GBY_1673] (rows=180081 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(VALUE._col0)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Map 18 [SIMPLE_EDGE] vectorized, llap - SHUFFLE [RS_1670] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1669] (rows=215917119 width=19) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count()"],keys:_col4, _col5, _col6 - Map Join Operator [MAPJOIN_1668] (rows=25557780268 width=11) - Conds:MAPJOIN_1667._col0=RS_1612._col0(Inner),Output:["_col4","_col5","_col6"] - <-Map 7 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1612] - PartitionCols:_col0 - Select Operator [SEL_1609] (rows=458612 width=19) - Output:["_col0","_col1","_col2","_col3"] - Filter Operator [FIL_1608] (rows=458612 width=19) - predicate:(i_category_id is not null and i_brand_id is not null and i_class_id is not null) - TableScan [TS_6] (rows=462000 width=19) - tpcds_bin_partitioned_orc_30000@item,item, ACID table,Tbl:COMPLETE,Col:COMPLETE,Output:["i_item_sk","i_brand_id","i_class_id","i_category_id"] - <-Map Join Operator [MAPJOIN_1667] (rows=25746588712 width=8) - Conds:SEL_1666._col1=RS_1580._col0(Inner),Output:["_col0"] - <-Map 6 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1580] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1571] - <-Select Operator [SEL_1666] (rows=43005109025 width=16) - Output:["_col0","_col1"] - TableScan [TS_29] (rows=43005109025 width=16) - tpcds_bin_partitioned_orc_30000@catalog_sales,catalog_sales, ACID table,Tbl:COMPLETE,Col:COMPLETE,Output:["cs_item_sk"] - <-Reducer 23 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1691] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1690] (rows=153920 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(_col3)"],keys:_col0, _col1, _col2 - Group By Operator [GBY_1689] (rows=180081 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(VALUE._col0)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Map 22 [SIMPLE_EDGE] vectorized, llap - SHUFFLE [RS_1686] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1685] (rows=109129086 width=19) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count()"],keys:_col4, _col5, _col6 - Map Join Operator [MAPJOIN_1684] (rows=12924982039 width=11) - Conds:MAPJOIN_1683._col0=RS_1613._col0(Inner),Output:["_col4","_col5","_col6"] - <-Map 7 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1613] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1609] - <-Map Join Operator [MAPJOIN_1683] (rows=13020465516 width=8) - Conds:SEL_1682._col1=RS_1582._col0(Inner),Output:["_col0"] - <-Map 6 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1582] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1571] - <-Select Operator [SEL_1682] (rows=21594638446 width=16) - Output:["_col0","_col1"] - TableScan [TS_50] (rows=21594638446 width=16) - tpcds_bin_partitioned_orc_30000@web_sales,web_sales, ACID table,Tbl:COMPLETE,Col:COMPLETE,Output:["ws_item_sk"] - <-Reducer 9 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1659] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1658] (rows=153920 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(_col3)"],keys:_col0, _col1, _col2 - Group By Operator [GBY_1657] (rows=180081 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(VALUE._col0)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Map 8 [SIMPLE_EDGE] vectorized, llap - SHUFFLE [RS_1654] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1653] (rows=416887515 width=19) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count()"],keys:_col4, _col5, _col6 - Map Join Operator [MAPJOIN_1652] (rows=49385019517 width=11) - Conds:MAPJOIN_1651._col0=RS_1611._col0(Inner),Output:["_col4","_col5","_col6"] - <-Map 7 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1611] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1609] - <-Map Join Operator [MAPJOIN_1651] (rows=49749852010 width=8) - Conds:SEL_1650._col1=RS_1578._col0(Inner),Output:["_col0"] - <-Map 6 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1578] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1571] - <-Select Operator [SEL_1650] (rows=82510879939 width=16) - Output:["_col0","_col1"] - TableScan [TS_9] (rows=82510879939 width=16) - tpcds_bin_partitioned_orc_30000@store_sales,store_sales, ACID table,Tbl:COMPLETE,Col:COMPLETE,Output:["ss_item_sk"] - <-Map Join Operator [MAPJOIN_1626] (rows=1390495544 width=19) - Conds:MAPJOIN_1625._col0=RS_1610._col0(Inner),Output:["_col0","_col1","_col2","_col6","_col7","_col8"] - <-Map 7 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1610] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1609] - <-Map Join Operator [MAPJOIN_1625] (rows=1400767848 width=8) - Conds:SEL_1624._col3=RS_1572._col0(Inner),Output:["_col0","_col1","_col2"] - <-Map 6 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1572] - PartitionCols:_col0 - Select Operator [SEL_1570] (rows=31 width=8) - Output:["_col0"] - Filter Operator [FIL_1568] (rows=31 width=16) - predicate:((d_year = 2000) and (d_moy = 11)) - Please refer to the previous TableScan [TS_3] - <-Select Operator [SEL_1624] (rows=82510879939 width=129) - Output:["_col0","_col1","_col2","_col3"] - TableScan [TS_0] (rows=82510879939 width=129) - tpcds_bin_partitioned_orc_30000@store_sales,store_sales, ACID table,Tbl:COMPLETE,Col:COMPLETE,Output:["ss_item_sk","ss_quantity","ss_list_price"] - <-Reducer 35 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1764] - PartitionCols:_col0, _col1, _col2, _col3, _col4 - Group By Operator [GBY_1763] (rows=398760 width=230) - Output:["_col0","_col1","_col2","_col3","_col4","_col5","_col6"],aggregations:["sum(_col4)","sum(_col5)"],keys:_col0, _col1, _col2, _col3, 0L - Top N Key Operator [TNK_1762] (rows=159504 width=221) - keys:_col0, _col1, _col2, _col3,top n:100 - Select Operator [SEL_1761] (rows=60027 width=222) - Output:["_col0","_col1","_col2","_col3","_col4","_col5"] - Filter Operator [FIL_1760] (rows=60027 width=243) - predicate:(_col3 > _col5) - Map Join Operator [MAPJOIN_1759] (rows=180081 width=243) - Conds:(Inner),Output:["_col0","_col1","_col2","_col3","_col4","_col5"] - <-Reducer 38 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1756] - Select Operator [SEL_1755] (rows=1 width=112) - Output:["_col0"] - Filter Operator [FIL_1754] (rows=1 width=120) - predicate:CAST( (_col0 / _col1) AS decimal(22,6)) is not null - Group By Operator [GBY_1753] (rows=1 width=120) - Output:["_col0","_col1"],aggregations:["sum(VALUE._col0)","count(VALUE._col1)"] - <-Union 37 [CUSTOM_SIMPLE_EDGE] - <-Map 36 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1769] - Group By Operator [GBY_1768] (rows=1 width=120) - Output:["_col0","_col1"],aggregations:["sum(_col0)","count(_col0)"] - Select Operator [SEL_1767] (rows=88516906238 width=113) - Output:["_col0"] - Map Join Operator [MAPJOIN_1766] (rows=49749852010 width=111) - Conds:SEL_1765._col2=RS_1586._col0(Inner),Output:["_col0","_col1"] - <-Map 6 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1586] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1571] - <-Select Operator [SEL_1765] (rows=82510879939 width=121) - Output:["_col0","_col1","_col2"] - TableScan [TS_1405] (rows=82510879939 width=121) - Output:["ss_quantity","ss_list_price"] - <-Map 39 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1774] - Group By Operator [GBY_1773] (rows=1 width=120) - Output:["_col0","_col1"],aggregations:["sum(_col0)","count(_col0)"] - Select Operator [SEL_1772] (rows=88516906238 width=113) - Output:["_col0"] - Map Join Operator [MAPJOIN_1771] (rows=25746588712 width=115) - Conds:SEL_1770._col2=RS_1707._col0(Inner),Output:["_col0","_col1"] - <-Map 31 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1707] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1704] - <-Select Operator [SEL_1770] (rows=43005109025 width=123) - Output:["_col0","_col1","_col2"] - TableScan [TS_1428] (rows=43005109025 width=123) - Output:["cs_quantity","cs_list_price"] - <-Map 40 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1779] - Group By Operator [GBY_1778] (rows=1 width=120) - Output:["_col0","_col1"],aggregations:["sum(_col0)","count(_col0)"] - Select Operator [SEL_1777] (rows=88516906238 width=113) - Output:["_col0"] - Map Join Operator [MAPJOIN_1776] (rows=13020465516 width=115) - Conds:SEL_1775._col2=RS_1726._col0(Inner),Output:["_col0","_col1"] - <-Map 33 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1726] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1723] - <-Select Operator [SEL_1775] (rows=21594638446 width=123) - Output:["_col0","_col1","_col2"] - TableScan [TS_1451] (rows=21594638446 width=123) - Output:["ws_quantity","ws_list_price"] - <-Filter Operator [FIL_1758] (rows=180081 width=131) - predicate:_col3 is not null - Group By Operator [GBY_1757] (rows=180081 width=131) - Output:["_col0","_col1","_col2","_col3","_col4"],aggregations:["sum(VALUE._col0)","count(VALUE._col1)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Map 34 [SIMPLE_EDGE] vectorized, llap - SHUFFLE [RS_1752] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1751] (rows=180081 width=131) - Output:["_col0","_col1","_col2","_col3","_col4"],aggregations:["sum(_col3)","count()"],keys:_col0, _col1, _col2 - Select Operator [SEL_1750] (rows=748035 width=11) - Output:["_col0","_col1","_col2","_col3"] - Map Join Operator [MAPJOIN_1749] (rows=748035 width=11) - Conds:MAPJOIN_1748._col0=RS_1622._col0(Inner),Output:["_col1","_col2","_col13","_col14","_col15"] - <-Map 26 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1622] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1620] - <-Map Join Operator [MAPJOIN_1748] (rows=748035 width=8) - Conds:MAPJOIN_1747._col6, _col7, _col8=RS_1744._col0, _col1, _col2(Inner),Output:["_col0","_col1","_col2"] - <-Reducer 14 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1744] - PartitionCols:_col0, _col1, _col2 - Select Operator [SEL_1743] (rows=1 width=12) - Output:["_col0","_col1","_col2"] - Filter Operator [FIL_1742] (rows=1 width=20) - predicate:(_col3 = 3L) - Group By Operator [GBY_1741] (rows=153920 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(VALUE._col0)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Union 13 [SIMPLE_EDGE] - <-Reducer 12 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1662] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1661] (rows=153920 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(_col3)"],keys:_col0, _col1, _col2 - Group By Operator [GBY_1660] (rows=180081 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(VALUE._col0)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Map 8 [SIMPLE_EDGE] vectorized, llap - SHUFFLE [RS_1655] - PartitionCols:_col0, _col1, _col2 - Please refer to the previous Group By Operator [GBY_1653] - <-Reducer 20 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1678] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1677] (rows=153920 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(_col3)"],keys:_col0, _col1, _col2 - Group By Operator [GBY_1676] (rows=180081 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(VALUE._col0)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Map 18 [SIMPLE_EDGE] vectorized, llap - SHUFFLE [RS_1671] - PartitionCols:_col0, _col1, _col2 - Please refer to the previous Group By Operator [GBY_1669] - <-Reducer 24 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1694] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1693] (rows=153920 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(_col3)"],keys:_col0, _col1, _col2 - Group By Operator [GBY_1692] (rows=180081 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(VALUE._col0)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Map 22 [SIMPLE_EDGE] vectorized, llap - SHUFFLE [RS_1687] - PartitionCols:_col0, _col1, _col2 - Please refer to the previous Group By Operator [GBY_1685] - <-Map Join Operator [MAPJOIN_1747] (rows=719610520 width=118) - Conds:MAPJOIN_1746._col0=RS_1614._col0(Inner),Output:["_col0","_col1","_col2","_col6","_col7","_col8"] - <-Map 7 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1614] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1609] - <-Map Join Operator [MAPJOIN_1746] (rows=724926652 width=106) - Conds:SEL_1745._col3=RS_1574._col0(Inner),Output:["_col0","_col1","_col2"] - <-Map 6 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1574] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1570] - <-Select Operator [SEL_1745] (rows=43005109025 width=131) - Output:["_col0","_col1","_col2","_col3"] - TableScan [TS_142] (rows=43005109025 width=131) - tpcds_bin_partitioned_orc_30000@catalog_sales,catalog_sales, ACID table,Tbl:COMPLETE,Col:COMPLETE,Output:["cs_item_sk","cs_quantity","cs_list_price"] - <-Reducer 42 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1803] - PartitionCols:_col0, _col1, _col2, _col3, _col4 - Group By Operator [GBY_1802] (rows=398760 width=230) - Output:["_col0","_col1","_col2","_col3","_col4","_col5","_col6"],aggregations:["sum(_col4)","sum(_col5)"],keys:_col0, _col1, _col2, _col3, 0L - Top N Key Operator [TNK_1801] (rows=159504 width=221) - keys:_col0, _col1, _col2, _col3,top n:100 - Select Operator [SEL_1800] (rows=39450 width=218) - Output:["_col0","_col1","_col2","_col3","_col4","_col5"] - Filter Operator [FIL_1799] (rows=39450 width=243) - predicate:(_col3 > _col5) - Map Join Operator [MAPJOIN_1798] (rows=118350 width=243) - Conds:(Inner),Output:["_col0","_col1","_col2","_col3","_col4","_col5"] - <-Reducer 45 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1795] - Select Operator [SEL_1794] (rows=1 width=112) - Output:["_col0"] - Filter Operator [FIL_1793] (rows=1 width=120) - predicate:CAST( (_col0 / _col1) AS decimal(22,6)) is not null - Group By Operator [GBY_1792] (rows=1 width=120) - Output:["_col0","_col1"],aggregations:["sum(VALUE._col0)","count(VALUE._col1)"] - <-Union 44 [CUSTOM_SIMPLE_EDGE] - <-Map 43 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1808] - Group By Operator [GBY_1807] (rows=1 width=120) - Output:["_col0","_col1"],aggregations:["sum(_col0)","count(_col0)"] - Select Operator [SEL_1806] (rows=88516906238 width=113) - Output:["_col0"] - Map Join Operator [MAPJOIN_1805] (rows=49749852010 width=111) - Conds:SEL_1804._col2=RS_1588._col0(Inner),Output:["_col0","_col1"] - <-Map 6 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1588] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1571] - <-Select Operator [SEL_1804] (rows=82510879939 width=121) - Output:["_col0","_col1","_col2"] - TableScan [TS_1499] (rows=82510879939 width=121) - Output:["ss_quantity","ss_list_price"] - <-Map 46 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1813] - Group By Operator [GBY_1812] (rows=1 width=120) - Output:["_col0","_col1"],aggregations:["sum(_col0)","count(_col0)"] - Select Operator [SEL_1811] (rows=88516906238 width=113) - Output:["_col0"] - Map Join Operator [MAPJOIN_1810] (rows=25746588712 width=115) - Conds:SEL_1809._col2=RS_1709._col0(Inner),Output:["_col0","_col1"] - <-Map 31 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1709] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1704] - <-Select Operator [SEL_1809] (rows=43005109025 width=123) - Output:["_col0","_col1","_col2"] - TableScan [TS_1522] (rows=43005109025 width=123) - Output:["cs_quantity","cs_list_price"] - <-Map 47 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1818] - Group By Operator [GBY_1817] (rows=1 width=120) - Output:["_col0","_col1"],aggregations:["sum(_col0)","count(_col0)"] - Select Operator [SEL_1816] (rows=88516906238 width=113) - Output:["_col0"] - Map Join Operator [MAPJOIN_1815] (rows=13020465516 width=115) - Conds:SEL_1814._col2=RS_1728._col0(Inner),Output:["_col0","_col1"] - <-Map 33 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1728] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1723] - <-Select Operator [SEL_1814] (rows=21594638446 width=123) - Output:["_col0","_col1","_col2"] - TableScan [TS_1545] (rows=21594638446 width=123) - Output:["ws_quantity","ws_list_price"] - <-Filter Operator [FIL_1797] (rows=118350 width=131) - predicate:_col3 is not null - Group By Operator [GBY_1796] (rows=118350 width=131) - Output:["_col0","_col1","_col2","_col3","_col4"],aggregations:["sum(VALUE._col0)","count(VALUE._col1)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Map 41 [SIMPLE_EDGE] vectorized, llap - SHUFFLE [RS_1791] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1790] (rows=118350 width=131) - Output:["_col0","_col1","_col2","_col3","_col4"],aggregations:["sum(_col3)","count()"],keys:_col0, _col1, _col2 - Select Operator [SEL_1789] (rows=378293 width=11) - Output:["_col0","_col1","_col2","_col3"] - Map Join Operator [MAPJOIN_1788] (rows=378293 width=11) - Conds:MAPJOIN_1787._col0=RS_1623._col0(Inner),Output:["_col1","_col2","_col13","_col14","_col15"] - <-Map 26 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1623] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1620] - <-Map Join Operator [MAPJOIN_1787] (rows=378293 width=8) - Conds:MAPJOIN_1786._col6, _col7, _col8=RS_1783._col0, _col1, _col2(Inner),Output:["_col0","_col1","_col2"] - <-Reducer 17 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1783] - PartitionCols:_col0, _col1, _col2 - Select Operator [SEL_1782] (rows=1 width=12) - Output:["_col0","_col1","_col2"] - Filter Operator [FIL_1781] (rows=1 width=20) - predicate:(_col3 = 3L) - Group By Operator [GBY_1780] (rows=153920 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(VALUE._col0)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Union 16 [SIMPLE_EDGE] - <-Reducer 15 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1665] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1664] (rows=153920 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(_col3)"],keys:_col0, _col1, _col2 - Group By Operator [GBY_1663] (rows=180081 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(VALUE._col0)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Map 8 [SIMPLE_EDGE] vectorized, llap - SHUFFLE [RS_1656] - PartitionCols:_col0, _col1, _col2 - Please refer to the previous Group By Operator [GBY_1653] - <-Reducer 21 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1681] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1680] (rows=153920 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(_col3)"],keys:_col0, _col1, _col2 - Group By Operator [GBY_1679] (rows=180081 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(VALUE._col0)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Map 18 [SIMPLE_EDGE] vectorized, llap - SHUFFLE [RS_1672] - PartitionCols:_col0, _col1, _col2 - Please refer to the previous Group By Operator [GBY_1669] - <-Reducer 25 [CONTAINS] vectorized, llap - Reduce Output Operator [RS_1697] - PartitionCols:_col0, _col1, _col2 - Group By Operator [GBY_1696] (rows=153920 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(_col3)"],keys:_col0, _col1, _col2 - Group By Operator [GBY_1695] (rows=180081 width=20) - Output:["_col0","_col1","_col2","_col3"],aggregations:["count(VALUE._col0)"],keys:KEY._col0, KEY._col1, KEY._col2 - <-Map 22 [SIMPLE_EDGE] vectorized, llap - SHUFFLE [RS_1688] - PartitionCols:_col0, _col1, _col2 - Please refer to the previous Group By Operator [GBY_1685] - <-Map Join Operator [MAPJOIN_1786] (rows=363918657 width=135) - Conds:MAPJOIN_1785._col0=RS_1615._col0(Inner),Output:["_col0","_col1","_col2","_col6","_col7","_col8"] - <-Map 7 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1615] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1609] - <-Map Join Operator [MAPJOIN_1785] (rows=366607110 width=123) - Conds:SEL_1784._col3=RS_1576._col0(Inner),Output:["_col0","_col1","_col2"] - <-Map 6 [BROADCAST_EDGE] vectorized, llap - BROADCAST [RS_1576] - PartitionCols:_col0 - Please refer to the previous Select Operator [SEL_1570] - <-Select Operator [SEL_1784] (rows=21594638446 width=131) - Output:["_col0","_col1","_col2","_col3"] - TableScan [TS_285] (rows=21594638446 width=131) - tpcds_bin_partitioned_orc_30000@web_sales,web_sales, ACID table,Tbl:COMPLETE,Col:COMPLETE,Output:["ws_item_sk","ws_quantity","ws_list_price"] + Stage: Stage-2 + Dependency Collection + + Stage: Stage-4 + Tez +#### A masked pattern was here #### + Edges: + Map 14 <- Map 19 (BROADCAST_EDGE), Map 26 (BROADCAST_EDGE), Reducer 25 (BROADCAST_EDGE) + Map 20 <- Map 19 (BROADCAST_EDGE), Map 26 (BROADCAST_EDGE), Reducer 25 (BROADCAST_EDGE) + Map 22 <- Map 19 (BROADCAST_EDGE), Map 26 (BROADCAST_EDGE) + Map 27 <- Map 19 (BROADCAST_EDGE), Map 26 (BROADCAST_EDGE) + Map 29 <- Map 19 (BROADCAST_EDGE), Map 26 (BROADCAST_EDGE), Reducer 25 (BROADCAST_EDGE) + Map 31 <- Map 19 (BROADCAST_EDGE), Map 26 (BROADCAST_EDGE) + Reducer 10 <- Map 9 (CUSTOM_SIMPLE_EDGE), Reducer 13 (BROADCAST_EDGE) + Reducer 11 <- Reducer 10 (CUSTOM_SIMPLE_EDGE) + Reducer 12 <- Reducer 10 (CUSTOM_SIMPLE_EDGE) + Reducer 13 <- Map 9 (CUSTOM_SIMPLE_EDGE) + Reducer 15 <- Map 14 (SIMPLE_EDGE), Reducer 11 (BROADCAST_EDGE), Union 16 (CONTAINS) + Reducer 17 <- Union 16 (SIMPLE_EDGE) + Reducer 18 <- Reducer 17 (SIMPLE_EDGE) + Reducer 21 <- Map 20 (SIMPLE_EDGE), Reducer 12 (BROADCAST_EDGE), Union 16 (CONTAINS) + Reducer 23 <- Map 22 (SIMPLE_EDGE), Union 24 (CONTAINS) + Reducer 25 <- Map 26 (BROADCAST_EDGE), Union 24 (SIMPLE_EDGE) + Reducer 28 <- Map 27 (SIMPLE_EDGE), Union 24 (CONTAINS) + Reducer 30 <- Map 29 (SIMPLE_EDGE), Reducer 10 (BROADCAST_EDGE), Union 16 (CONTAINS) + Reducer 32 <- Map 31 (SIMPLE_EDGE), Union 24 (CONTAINS) +#### A masked pattern was here #### + Vertices: + Map 14 + Map Operator Tree: + TableScan + alias: store_sales + Statistics: Num rows: 82510879939 Data size: 10665797015532 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: ss_item_sk (type: bigint), ss_quantity (type: int), ss_list_price (type: decimal(7,2)), ss_sold_date_sk (type: bigint) + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 82510879939 Data size: 10665797015532 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col3 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col0, _col1, _col2 + input vertices: + 1 Map 19 + Statistics: Num rows: 1400767848 Data size: 11206142900 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Left Semi Join 0 to 1 + keys: + 0 _col0 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col0, _col1, _col2 + input vertices: + 1 Reducer 25 + Statistics: Num rows: 1400767848 Data size: 11206142900 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col0 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col1, _col2, _col8, _col9, _col10 + input vertices: + 1 Map 26 + Statistics: Num rows: 1400767848 Data size: 16809200716 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: _col8 (type: int), _col9 (type: int), _col10 (type: int), (CAST( _col1 AS decimal(10,0)) * _col2) (type: decimal(18,2)) + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 1400767848 Data size: 16809200716 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + aggregations: sum(_col3), count() + keys: _col0 (type: int), _col1 (type: int), _col2 (type: int) + minReductionHashAggr: 0.99 + mode: hash + outputColumnNames: _col0, _col1, _col2, _col3, _col4 + Statistics: Num rows: 11885346 Data size: 1568865568 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: int), _col1 (type: int), _col2 (type: int) + null sort order: zzz + sort order: +++ + Map-reduce partition columns: _col0 (type: int), _col1 (type: int), _col2 (type: int) + Statistics: Num rows: 11885346 Data size: 1568865568 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col3 (type: decimal(28,2)), _col4 (type: bigint) + Execution mode: vectorized, llap + LLAP IO: may be used (ACID table) + Map 19 + Map Operator Tree: + TableScan + alias: date_dim + filterExpr: (((d_year = 2000) and (d_moy = 11)) or d_year BETWEEN 1999 AND 2001) (type: boolean) + Statistics: Num rows: 73049 Data size: 1168784 Basic stats: COMPLETE Column stats: COMPLETE + Filter Operator + predicate: ((d_year = 2000) and (d_moy = 11)) (type: boolean) + Statistics: Num rows: 31 Data size: 496 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: d_date_sk (type: bigint) + outputColumnNames: _col0 + Statistics: Num rows: 31 Data size: 248 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 31 Data size: 248 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: _col0 (type: bigint) + outputColumnNames: _col0 + Statistics: Num rows: 31 Data size: 248 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + keys: _col0 (type: bigint) + minReductionHashAggr: 0.4 + mode: hash + outputColumnNames: _col0 + Statistics: Num rows: 31 Data size: 248 Basic stats: COMPLETE Column stats: COMPLETE + Dynamic Partitioning Event Operator + Target column: ss_sold_date_sk (bigint) + Target Input: store_sales + Partition key expr: ss_sold_date_sk + Statistics: Num rows: 31 Data size: 248 Basic stats: COMPLETE Column stats: COMPLETE + Target Vertex: Map 14 + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 31 Data size: 248 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: _col0 (type: bigint) + outputColumnNames: _col0 + Statistics: Num rows: 31 Data size: 248 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + keys: _col0 (type: bigint) + minReductionHashAggr: 0.4 + mode: hash + outputColumnNames: _col0 + Statistics: Num rows: 31 Data size: 248 Basic stats: COMPLETE Column stats: COMPLETE + Dynamic Partitioning Event Operator + Target column: ws_sold_date_sk (bigint) + Target Input: web_sales + Partition key expr: ws_sold_date_sk + Statistics: Num rows: 31 Data size: 248 Basic stats: COMPLETE Column stats: COMPLETE + Target Vertex: Map 29 + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 31 Data size: 248 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: _col0 (type: bigint) + outputColumnNames: _col0 + Statistics: Num rows: 31 Data size: 248 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + keys: _col0 (type: bigint) + minReductionHashAggr: 0.4 + mode: hash + outputColumnNames: _col0 + Statistics: Num rows: 31 Data size: 248 Basic stats: COMPLETE Column stats: COMPLETE + Dynamic Partitioning Event Operator + Target column: cs_sold_date_sk (bigint) + Target Input: catalog_sales + Partition key expr: cs_sold_date_sk + Statistics: Num rows: 31 Data size: 248 Basic stats: COMPLETE Column stats: COMPLETE + Target Vertex: Map 20 + Filter Operator + predicate: d_year BETWEEN 1999 AND 2001 (type: boolean) + Statistics: Num rows: 1101 Data size: 13212 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: d_date_sk (type: bigint) + outputColumnNames: _col0 + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: _col0 (type: bigint) + outputColumnNames: _col0 + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + keys: _col0 (type: bigint) + minReductionHashAggr: 0.4 + mode: hash + outputColumnNames: _col0 + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Dynamic Partitioning Event Operator + Target column: cs_sold_date_sk (bigint) + Target Input: catalog_sales + Partition key expr: cs_sold_date_sk + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Target Vertex: Map 27 + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: _col0 (type: bigint) + outputColumnNames: _col0 + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + keys: _col0 (type: bigint) + minReductionHashAggr: 0.4 + mode: hash + outputColumnNames: _col0 + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Dynamic Partitioning Event Operator + Target column: ws_sold_date_sk (bigint) + Target Input: web_sales + Partition key expr: ws_sold_date_sk + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Target Vertex: Map 31 + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: _col0 (type: bigint) + outputColumnNames: _col0 + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + keys: _col0 (type: bigint) + minReductionHashAggr: 0.4 + mode: hash + outputColumnNames: _col0 + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Dynamic Partitioning Event Operator + Target column: ss_sold_date_sk (bigint) + Target Input: store_sales + Partition key expr: ss_sold_date_sk + Statistics: Num rows: 1101 Data size: 8808 Basic stats: COMPLETE Column stats: COMPLETE + Target Vertex: Map 22 + Execution mode: vectorized, llap + LLAP IO: may be used (ACID table) + Map 20 + Map Operator Tree: + TableScan + alias: catalog_sales + Statistics: Num rows: 43005109025 Data size: 5664232305236 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: cs_item_sk (type: bigint), cs_quantity (type: int), cs_list_price (type: decimal(7,2)), cs_sold_date_sk (type: bigint) + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 43005109025 Data size: 5664232305236 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col3 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col0, _col1, _col2 + input vertices: + 1 Map 19 + Statistics: Num rows: 724926652 Data size: 77448818784 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Left Semi Join 0 to 1 + keys: + 0 _col0 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col0, _col1, _col2 + input vertices: + 1 Reducer 25 + Statistics: Num rows: 724926652 Data size: 77448818784 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col0 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col1, _col2, _col8, _col9, _col10 + input vertices: + 1 Map 26 + Statistics: Num rows: 724926652 Data size: 80348511816 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: _col8 (type: int), _col9 (type: int), _col10 (type: int), (CAST( _col1 AS decimal(10,0)) * _col2) (type: decimal(18,2)) + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 724926652 Data size: 80348511816 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + aggregations: sum(_col3), count() + keys: _col0 (type: int), _col1 (type: int), _col2 (type: int) + minReductionHashAggr: 0.99 + mode: hash + outputColumnNames: _col0, _col1, _col2, _col3, _col4 + Statistics: Num rows: 56545434 Data size: 7463996240 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: int), _col1 (type: int), _col2 (type: int) + null sort order: zzz + sort order: +++ + Map-reduce partition columns: _col0 (type: int), _col1 (type: int), _col2 (type: int) + Statistics: Num rows: 56545434 Data size: 7463996240 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col3 (type: decimal(28,2)), _col4 (type: bigint) + Execution mode: vectorized, llap + LLAP IO: may be used (ACID table) + Map 22 + Map Operator Tree: + TableScan + alias: store_sales + Statistics: Num rows: 82510879939 Data size: 1320174079024 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: ss_item_sk (type: bigint), ss_sold_date_sk (type: bigint) + outputColumnNames: _col0, _col1 + Statistics: Num rows: 82510879939 Data size: 1320174079024 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col1 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col0 + input vertices: + 1 Map 19 + Statistics: Num rows: 49749852010 Data size: 397998816080 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col0 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col4, _col5, _col6 + input vertices: + 1 Map 26 + Statistics: Num rows: 49385019517 Data size: 592620220724 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + aggregations: count() + keys: _col4 (type: int), _col5 (type: int), _col6 (type: int) + minReductionHashAggr: 0.99 + mode: hash + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 416887515 Data size: 8337750196 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: int), _col1 (type: int), _col2 (type: int) + null sort order: zzz + sort order: +++ + Map-reduce partition columns: _col0 (type: int), _col1 (type: int), _col2 (type: int) + Statistics: Num rows: 416887515 Data size: 8337750196 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col3 (type: bigint) + Execution mode: vectorized, llap + LLAP IO: may be used (ACID table) + Map 26 + Map Operator Tree: + TableScan + alias: iss + Statistics: Num rows: 462000 Data size: 9226424 Basic stats: COMPLETE Column stats: COMPLETE + Filter Operator + predicate: (i_category_id is not null and i_brand_id is not null and i_class_id is not null) (type: boolean) + Statistics: Num rows: 458612 Data size: 9158760 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: i_item_sk (type: bigint), i_brand_id (type: int), i_class_id (type: int), i_category_id (type: int) + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 458612 Data size: 9158760 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 458612 Data size: 9158760 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col1 (type: int), _col2 (type: int), _col3 (type: int) + Reduce Output Operator + key expressions: _col1 (type: int), _col2 (type: int), _col3 (type: int) + null sort order: zzz + sort order: +++ + Map-reduce partition columns: _col1 (type: int), _col2 (type: int), _col3 (type: int) + Statistics: Num rows: 458612 Data size: 9158760 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col0 (type: bigint) + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 458612 Data size: 9158760 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col1 (type: int), _col2 (type: int), _col3 (type: int) + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 458612 Data size: 9158760 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col1 (type: int), _col2 (type: int), _col3 (type: int) + Select Operator + expressions: i_item_sk (type: bigint), i_brand_id (type: int), i_class_id (type: int), i_category_id (type: int) + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 462000 Data size: 9226424 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 462000 Data size: 9226424 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col1 (type: int), _col2 (type: int), _col3 (type: int) + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 462000 Data size: 9226424 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col1 (type: int), _col2 (type: int), _col3 (type: int) + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 462000 Data size: 9226424 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col1 (type: int), _col2 (type: int), _col3 (type: int) + Execution mode: vectorized, llap + LLAP IO: may be used (ACID table) + Map 27 + Map Operator Tree: + TableScan + alias: catalog_sales + Statistics: Num rows: 43005109025 Data size: 688081744400 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: cs_item_sk (type: bigint), cs_sold_date_sk (type: bigint) + outputColumnNames: _col0, _col1 + Statistics: Num rows: 43005109025 Data size: 688081744400 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col1 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col0 + input vertices: + 1 Map 19 + Statistics: Num rows: 25746588712 Data size: 205972709696 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col0 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col4, _col5, _col6 + input vertices: + 1 Map 26 + Statistics: Num rows: 25557780268 Data size: 306693349736 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + aggregations: count() + keys: _col4 (type: int), _col5 (type: int), _col6 (type: int) + minReductionHashAggr: 0.99 + mode: hash + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 215917119 Data size: 4318342276 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: int), _col1 (type: int), _col2 (type: int) + null sort order: zzz + sort order: +++ + Map-reduce partition columns: _col0 (type: int), _col1 (type: int), _col2 (type: int) + Statistics: Num rows: 215917119 Data size: 4318342276 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col3 (type: bigint) + Execution mode: vectorized, llap + LLAP IO: may be used (ACID table) + Map 29 + Map Operator Tree: + TableScan + alias: web_sales + Statistics: Num rows: 21594638446 Data size: 2850178636132 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: ws_item_sk (type: bigint), ws_quantity (type: int), ws_list_price (type: decimal(7,2)), ws_sold_date_sk (type: bigint) + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 21594638446 Data size: 2850178636132 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col3 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col0, _col1, _col2 + input vertices: + 1 Map 19 + Statistics: Num rows: 366607110 Data size: 45145642900 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Left Semi Join 0 to 1 + keys: + 0 _col0 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col0, _col1, _col2 + input vertices: + 1 Reducer 25 + Statistics: Num rows: 366607110 Data size: 45145642900 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col0 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col1, _col2, _col8, _col9, _col10 + input vertices: + 1 Map 26 + Statistics: Num rows: 366607110 Data size: 46612057764 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: _col8 (type: int), _col9 (type: int), _col10 (type: int), (CAST( _col1 AS decimal(10,0)) * _col2) (type: decimal(18,2)) + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 366607110 Data size: 46612057764 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + aggregations: sum(_col3), count() + keys: _col0 (type: int), _col1 (type: int), _col2 (type: int) + minReductionHashAggr: 0.99 + mode: hash + outputColumnNames: _col0, _col1, _col2, _col3, _col4 + Statistics: Num rows: 32954823 Data size: 4350035428 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: int), _col1 (type: int), _col2 (type: int) + null sort order: zzz + sort order: +++ + Map-reduce partition columns: _col0 (type: int), _col1 (type: int), _col2 (type: int) + Statistics: Num rows: 32954823 Data size: 4350035428 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col3 (type: decimal(28,2)), _col4 (type: bigint) + Execution mode: vectorized, llap + LLAP IO: may be used (ACID table) + Map 31 + Map Operator Tree: + TableScan + alias: web_sales + Statistics: Num rows: 21594638446 Data size: 345514215136 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: ws_item_sk (type: bigint), ws_sold_date_sk (type: bigint) + outputColumnNames: _col0, _col1 + Statistics: Num rows: 21594638446 Data size: 345514215136 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col1 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col0 + input vertices: + 1 Map 19 + Statistics: Num rows: 13020465516 Data size: 104163724128 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col0 (type: bigint) + 1 _col0 (type: bigint) + outputColumnNames: _col4, _col5, _col6 + input vertices: + 1 Map 26 + Statistics: Num rows: 12924982039 Data size: 155099770988 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + aggregations: count() + keys: _col4 (type: int), _col5 (type: int), _col6 (type: int) + minReductionHashAggr: 0.99 + mode: hash + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 109129086 Data size: 2182581616 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: int), _col1 (type: int), _col2 (type: int) + null sort order: zzz + sort order: +++ + Map-reduce partition columns: _col0 (type: int), _col1 (type: int), _col2 (type: int) + Statistics: Num rows: 109129086 Data size: 2182581616 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col3 (type: bigint) + Execution mode: vectorized, llap + LLAP IO: may be used (ACID table) + Map 9 + Map Operator Tree: + TableScan + alias: avg_sales + Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: COMPLETE + Select Operator + Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: COMPLETE + Group By Operator + aggregations: count() + minReductionHashAggr: 0.99 + mode: hash + outputColumnNames: _col0 + Statistics: Num rows: 1 Data size: 8 Basic stats: PARTIAL Column stats: COMPLETE + Reduce Output Operator + null sort order: + sort order: + Statistics: Num rows: 1 Data size: 8 Basic stats: PARTIAL Column stats: COMPLETE + value expressions: _col0 (type: bigint) + Filter Operator + predicate: average_sales is not null (type: boolean) + Statistics: Num rows: 1 Data size: 112 Basic stats: COMPLETE Column stats: NONE + Select Operator + expressions: average_sales (type: decimal(22,6)) + outputColumnNames: _col0 + Statistics: Num rows: 1 Data size: 112 Basic stats: COMPLETE Column stats: NONE + Reduce Output Operator + null sort order: + sort order: + Statistics: Num rows: 1 Data size: 112 Basic stats: COMPLETE Column stats: NONE + value expressions: _col0 (type: decimal(22,6)) + Execution mode: vectorized, llap + LLAP IO: all inputs + Reducer 10 + Execution mode: vectorized, llap + Reduce Operator Tree: + Group By Operator + aggregations: count(VALUE._col0) + mode: mergepartial + outputColumnNames: _col0 + Statistics: Num rows: 1 Data size: 8 Basic stats: PARTIAL Column stats: COMPLETE + Filter Operator + predicate: sq_count_check(_col0) (type: boolean) + Statistics: Num rows: 1 Data size: 8 Basic stats: PARTIAL Column stats: COMPLETE + Select Operator + Statistics: Num rows: 1 Data size: 8 Basic stats: PARTIAL Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 + 1 + outputColumnNames: _col1 + input vertices: + 1 Reducer 13 + Statistics: Num rows: 1 Data size: 121 Basic stats: PARTIAL Column stats: NONE + Reduce Output Operator + null sort order: + sort order: + Statistics: Num rows: 1 Data size: 121 Basic stats: PARTIAL Column stats: NONE + value expressions: _col1 (type: decimal(22,6)) + Reduce Output Operator + null sort order: + sort order: + Statistics: Num rows: 1 Data size: 121 Basic stats: PARTIAL Column stats: NONE + value expressions: _col1 (type: decimal(22,6)) + Reduce Output Operator + null sort order: + sort order: + Statistics: Num rows: 1 Data size: 121 Basic stats: PARTIAL Column stats: NONE + value expressions: _col1 (type: decimal(22,6)) + Reducer 11 + Execution mode: vectorized, llap + Reduce Operator Tree: + Select Operator + expressions: VALUE._col1 (type: decimal(22,6)) + outputColumnNames: _col1 + Reduce Output Operator + null sort order: + sort order: + Statistics: Num rows: 1 Data size: 121 Basic stats: PARTIAL Column stats: NONE + value expressions: _col1 (type: decimal(22,6)) + Reducer 12 + Execution mode: vectorized, llap + Reduce Operator Tree: + Select Operator + expressions: VALUE._col1 (type: decimal(22,6)) + outputColumnNames: _col1 + Reduce Output Operator + null sort order: + sort order: + Statistics: Num rows: 1 Data size: 121 Basic stats: PARTIAL Column stats: NONE + value expressions: _col1 (type: decimal(22,6)) + Reducer 13 + Execution mode: vectorized, llap + Reduce Operator Tree: + Select Operator + expressions: VALUE._col0 (type: decimal(22,6)) + outputColumnNames: _col0 + Reduce Output Operator + null sort order: + sort order: + Statistics: Num rows: 1 Data size: 112 Basic stats: COMPLETE Column stats: NONE + value expressions: _col0 (type: decimal(22,6)) + Reducer 15 + Execution mode: vectorized, llap + Reduce Operator Tree: + Group By Operator + aggregations: sum(VALUE._col0), count(VALUE._col1) + keys: KEY._col0 (type: int), KEY._col1 (type: int), KEY._col2 (type: int) + mode: mergepartial + outputColumnNames: _col0, _col1, _col2, _col3, _col4 + Statistics: Num rows: 180081 Data size: 23770692 Basic stats: COMPLETE Column stats: COMPLETE + Filter Operator + predicate: _col3 is not null (type: boolean) + Statistics: Num rows: 180081 Data size: 23770692 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 + 1 + outputColumnNames: _col1, _col2, _col3, _col4, _col5, _col6 + input vertices: + 0 Reducer 11 + Statistics: Num rows: 180081 Data size: 45740574 Basic stats: PARTIAL Column stats: NONE + Filter Operator + predicate: (_col5 > _col1) (type: boolean) + Statistics: Num rows: 60027 Data size: 15246858 Basic stats: PARTIAL Column stats: NONE + Select Operator + expressions: 'store' (type: string), _col2 (type: int), _col3 (type: int), _col4 (type: int), _col5 (type: decimal(28,2)), _col6 (type: bigint) + outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5 + Statistics: Num rows: 60027 Data size: 15246858 Basic stats: PARTIAL Column stats: NONE + Top N Key Operator + sort order: ++++ + keys: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int) + null sort order: zzzz + Statistics: Num rows: 180081 Data size: 45740574 Basic stats: PARTIAL Column stats: NONE + top n: 100 + Group By Operator + aggregations: sum(_col4), sum(_col5) + keys: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int), 0L (type: bigint) + grouping sets: 0, 1, 3, 7, 15 + minReductionHashAggr: 0.99 + mode: hash + outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6 + Statistics: Num rows: 900405 Data size: 228702870 Basic stats: PARTIAL Column stats: NONE + Reduce Output Operator + key expressions: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int), _col4 (type: bigint) + null sort order: zzzzz + sort order: +++++ + Map-reduce partition columns: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int), _col4 (type: bigint) + Statistics: Num rows: 900405 Data size: 228702870 Basic stats: PARTIAL Column stats: NONE + value expressions: _col5 (type: decimal(38,2)), _col6 (type: bigint) + Reducer 17 + Execution mode: vectorized, llap + Reduce Operator Tree: + Group By Operator + aggregations: sum(VALUE._col0), sum(VALUE._col1) + keys: KEY._col0 (type: string), KEY._col1 (type: int), KEY._col2 (type: int), KEY._col3 (type: int), KEY._col4 (type: bigint) + mode: mergepartial + outputColumnNames: _col0, _col1, _col2, _col3, _col5, _col6 + Statistics: Num rows: 450202 Data size: 114351308 Basic stats: PARTIAL Column stats: NONE + pruneGroupingSetId: true + Select Operator + expressions: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int), _col5 (type: decimal(38,2)), _col6 (type: bigint) + outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5 + Statistics: Num rows: 450202 Data size: 114351308 Basic stats: PARTIAL Column stats: NONE + Reduce Output Operator + key expressions: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int) + null sort order: zzzz + sort order: ++++ + Statistics: Num rows: 450202 Data size: 114351308 Basic stats: PARTIAL Column stats: NONE + value expressions: _col4 (type: decimal(38,2)), _col5 (type: bigint) + Reducer 18 + Execution mode: vectorized, llap + Reduce Operator Tree: + Select Operator + expressions: KEY.reducesinkkey0 (type: string), KEY.reducesinkkey1 (type: int), KEY.reducesinkkey2 (type: int), KEY.reducesinkkey3 (type: int), VALUE._col0 (type: decimal(38,2)), VALUE._col1 (type: bigint) + outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5 + Statistics: Num rows: 450202 Data size: 114351308 Basic stats: PARTIAL Column stats: NONE + Limit + Number of rows: 100 + Statistics: Num rows: 100 Data size: 25400 Basic stats: PARTIAL Column stats: NONE + File Output Operator + compressed: false + Statistics: Num rows: 100 Data size: 25400 Basic stats: PARTIAL Column stats: NONE + table: + input format: org.apache.hadoop.mapred.SequenceFileInputFormat + output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat + serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe + Reducer 21 + Execution mode: vectorized, llap + Reduce Operator Tree: + Group By Operator + aggregations: sum(VALUE._col0), count(VALUE._col1) + keys: KEY._col0 (type: int), KEY._col1 (type: int), KEY._col2 (type: int) + mode: mergepartial + outputColumnNames: _col0, _col1, _col2, _col3, _col4 + Statistics: Num rows: 180081 Data size: 23770692 Basic stats: COMPLETE Column stats: COMPLETE + Filter Operator + predicate: _col3 is not null (type: boolean) + Statistics: Num rows: 180081 Data size: 23770692 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 + 1 + outputColumnNames: _col1, _col2, _col3, _col4, _col5, _col6 + input vertices: + 0 Reducer 12 + Statistics: Num rows: 180081 Data size: 45740574 Basic stats: PARTIAL Column stats: NONE + Filter Operator + predicate: (_col5 > _col1) (type: boolean) + Statistics: Num rows: 60027 Data size: 15246858 Basic stats: PARTIAL Column stats: NONE + Select Operator + expressions: 'catalog' (type: string), _col2 (type: int), _col3 (type: int), _col4 (type: int), _col5 (type: decimal(28,2)), _col6 (type: bigint) + outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5 + Statistics: Num rows: 60027 Data size: 15246858 Basic stats: PARTIAL Column stats: NONE + Top N Key Operator + sort order: ++++ + keys: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int) + null sort order: zzzz + Statistics: Num rows: 180081 Data size: 45740574 Basic stats: PARTIAL Column stats: NONE + top n: 100 + Group By Operator + aggregations: sum(_col4), sum(_col5) + keys: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int), 0L (type: bigint) + grouping sets: 0, 1, 3, 7, 15 + minReductionHashAggr: 0.99 + mode: hash + outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6 + Statistics: Num rows: 900405 Data size: 228702870 Basic stats: PARTIAL Column stats: NONE + Reduce Output Operator + key expressions: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int), _col4 (type: bigint) + null sort order: zzzzz + sort order: +++++ + Map-reduce partition columns: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int), _col4 (type: bigint) + Statistics: Num rows: 900405 Data size: 228702870 Basic stats: PARTIAL Column stats: NONE + value expressions: _col5 (type: decimal(38,2)), _col6 (type: bigint) + Reducer 23 + Execution mode: vectorized, llap + Reduce Operator Tree: + Group By Operator + aggregations: count(VALUE._col0) + keys: KEY._col0 (type: int), KEY._col1 (type: int), KEY._col2 (type: int) + mode: mergepartial + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 180081 Data size: 3601620 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + aggregations: count(_col3) + keys: _col0 (type: int), _col1 (type: int), _col2 (type: int) + minReductionHashAggr: 0.9873353 + mode: hash + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 153920 Data size: 3078400 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: int), _col1 (type: int), _col2 (type: int) + null sort order: zzz + sort order: +++ + Map-reduce partition columns: _col0 (type: int), _col1 (type: int), _col2 (type: int) + Statistics: Num rows: 153920 Data size: 3078400 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col3 (type: bigint) + Reducer 25 + Execution mode: vectorized, llap + Reduce Operator Tree: + Group By Operator + aggregations: count(VALUE._col0) + keys: KEY._col0 (type: int), KEY._col1 (type: int), KEY._col2 (type: int) + mode: mergepartial + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 153920 Data size: 3078400 Basic stats: COMPLETE Column stats: COMPLETE + Filter Operator + predicate: (_col3 = 3L) (type: boolean) + Statistics: Num rows: 1 Data size: 20 Basic stats: COMPLETE Column stats: COMPLETE + Select Operator + expressions: _col0 (type: int), _col1 (type: int), _col2 (type: int) + outputColumnNames: _col0, _col1, _col2 + Statistics: Num rows: 1 Data size: 12 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 _col1 (type: int), _col2 (type: int), _col3 (type: int) + 1 _col0 (type: int), _col1 (type: int), _col2 (type: int) + outputColumnNames: _col0 + input vertices: + 0 Map 26 + Statistics: Num rows: 476 Data size: 3808 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + keys: _col0 (type: bigint) + minReductionHashAggr: 0.4 + mode: hash + outputColumnNames: _col0 + Statistics: Num rows: 477 Data size: 3816 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 477 Data size: 3816 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 477 Data size: 3816 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: bigint) + null sort order: z + sort order: + + Map-reduce partition columns: _col0 (type: bigint) + Statistics: Num rows: 477 Data size: 3816 Basic stats: COMPLETE Column stats: COMPLETE + Reducer 28 + Execution mode: vectorized, llap + Reduce Operator Tree: + Group By Operator + aggregations: count(VALUE._col0) + keys: KEY._col0 (type: int), KEY._col1 (type: int), KEY._col2 (type: int) + mode: mergepartial + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 180081 Data size: 3601620 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + aggregations: count(_col3) + keys: _col0 (type: int), _col1 (type: int), _col2 (type: int) + minReductionHashAggr: 0.9873353 + mode: hash + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 153920 Data size: 3078400 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: int), _col1 (type: int), _col2 (type: int) + null sort order: zzz + sort order: +++ + Map-reduce partition columns: _col0 (type: int), _col1 (type: int), _col2 (type: int) + Statistics: Num rows: 153920 Data size: 3078400 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col3 (type: bigint) + Reducer 30 + Execution mode: vectorized, llap + Reduce Operator Tree: + Group By Operator + aggregations: sum(VALUE._col0), count(VALUE._col1) + keys: KEY._col0 (type: int), KEY._col1 (type: int), KEY._col2 (type: int) + mode: mergepartial + outputColumnNames: _col0, _col1, _col2, _col3, _col4 + Statistics: Num rows: 180081 Data size: 23770692 Basic stats: COMPLETE Column stats: COMPLETE + Filter Operator + predicate: _col3 is not null (type: boolean) + Statistics: Num rows: 180081 Data size: 23770692 Basic stats: COMPLETE Column stats: COMPLETE + Map Join Operator + condition map: + Inner Join 0 to 1 + keys: + 0 + 1 + outputColumnNames: _col1, _col2, _col3, _col4, _col5, _col6 + input vertices: + 0 Reducer 10 + Statistics: Num rows: 180081 Data size: 45740574 Basic stats: PARTIAL Column stats: NONE + Filter Operator + predicate: (_col5 > _col1) (type: boolean) + Statistics: Num rows: 60027 Data size: 15246858 Basic stats: PARTIAL Column stats: NONE + Select Operator + expressions: 'web' (type: string), _col2 (type: int), _col3 (type: int), _col4 (type: int), _col5 (type: decimal(28,2)), _col6 (type: bigint) + outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5 + Statistics: Num rows: 60027 Data size: 15246858 Basic stats: PARTIAL Column stats: NONE + Top N Key Operator + sort order: ++++ + keys: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int) + null sort order: zzzz + Statistics: Num rows: 180081 Data size: 45740574 Basic stats: PARTIAL Column stats: NONE + top n: 100 + Group By Operator + aggregations: sum(_col4), sum(_col5) + keys: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int), 0L (type: bigint) + grouping sets: 0, 1, 3, 7, 15 + minReductionHashAggr: 0.99 + mode: hash + outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6 + Statistics: Num rows: 900405 Data size: 228702870 Basic stats: PARTIAL Column stats: NONE + Reduce Output Operator + key expressions: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int), _col4 (type: bigint) + null sort order: zzzzz + sort order: +++++ + Map-reduce partition columns: _col0 (type: string), _col1 (type: int), _col2 (type: int), _col3 (type: int), _col4 (type: bigint) + Statistics: Num rows: 900405 Data size: 228702870 Basic stats: PARTIAL Column stats: NONE + value expressions: _col5 (type: decimal(38,2)), _col6 (type: bigint) + Reducer 32 + Execution mode: vectorized, llap + Reduce Operator Tree: + Group By Operator + aggregations: count(VALUE._col0) + keys: KEY._col0 (type: int), KEY._col1 (type: int), KEY._col2 (type: int) + mode: mergepartial + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 180081 Data size: 3601620 Basic stats: COMPLETE Column stats: COMPLETE + Group By Operator + aggregations: count(_col3) + keys: _col0 (type: int), _col1 (type: int), _col2 (type: int) + minReductionHashAggr: 0.9873353 + mode: hash + outputColumnNames: _col0, _col1, _col2, _col3 + Statistics: Num rows: 153920 Data size: 3078400 Basic stats: COMPLETE Column stats: COMPLETE + Reduce Output Operator + key expressions: _col0 (type: int), _col1 (type: int), _col2 (type: int) + null sort order: zzz + sort order: +++ + Map-reduce partition columns: _col0 (type: int), _col1 (type: int), _col2 (type: int) + Statistics: Num rows: 153920 Data size: 3078400 Basic stats: COMPLETE Column stats: COMPLETE + value expressions: _col3 (type: bigint) + Union 16 + Vertex: Union 16 + Union 24 + Vertex: Union 24 + + Stage: Stage-0 + Move Operator + files: + hdfs directory: true +#### A masked pattern was here #### + + Stage: Stage-3 + Fetch Operator + limit: 100 + Processor Tree: + ListSink