-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
helper-expectation.R
296 lines (261 loc) · 9.9 KB
/
helper-expectation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
expect_as_vector <- function(x, y, ...) {
expect_equal(as.vector(x), y, ...)
}
# expect both objects to contain equal values when converted to data.frame objects
expect_equal_data_frame <- function(x, y, ...) {
expect_equal(as.data.frame(x), as.data.frame(y), ...)
}
expect_r6_class <- function(object, class) {
expect_s3_class(object, class)
expect_s3_class(object, "R6")
}
#' Mask `testthat::expect_equal()` in order to compare ArrowObjects using their
#' `Equals` methods from the C++ library.
expect_equal <- function(object, expected, ignore_attr = FALSE, ..., info = NULL, label = NULL) {
if (inherits(object, "ArrowObject") && inherits(expected, "ArrowObject")) {
mc <- match.call()
expect_true(
all.equal(object, expected, check.attributes = !ignore_attr),
info = info,
label = paste(rlang::as_label(mc[["object"]]), "==", rlang::as_label(mc[["expected"]]))
)
} else {
testthat::expect_equal(object, expected, ignore_attr = ignore_attr, ..., info = info, label = label)
}
}
expect_type_equal <- function(object, expected, ...) {
if (is.Array(object)) {
object <- object$type
}
if (is.Array(expected)) {
expected <- expected$type
}
expect_equal(object, expected, ...)
}
expect_match_arg_error <- function(object, values = c()) {
expect_error(object, paste0("'arg' .*", paste(dQuote(values), collapse = ", ")))
}
expect_deprecated <- expect_warning
verify_output <- function(...) {
if (isTRUE(grepl("conda", R.Version()$platform))) {
skip("On conda")
}
testthat::verify_output(...)
}
#' Ensure that dplyr methods on Arrow objects return the same as for data frames
#'
#' This function compares the output of running a dplyr expression on a tibble
#' or data.frame object against the output of the same expression run on a Table
#'
#' @param expr A dplyr pipeline which must have `.input` as its start
#' @param tbl A tibble or data.frame which will be substituted for `.input`
#' @param warning The expected warning from Arrow evaluation
#' path, passed to `expect_warning()`. Special values:
#' * `NA` (the default) for ensuring no warning message
#' * `TRUE` is a special case to mean to check for the
#' "not supported in Arrow; pulling data into R" message.
#' @param ... additional arguments, passed to `expect_equal()`
compare_dplyr_binding <- function(expr, tbl, warning = NA, ...) {
# Quote the contents of `expr` so that we can evaluate it twice
expr <- rlang::enquo(expr)
# Get the expected output by evaluating expr on the .input data.frame using regular dplyr
expected <- rlang::eval_tidy(expr, rlang::new_data_mask(rlang::env(.input = tbl)))
if (isTRUE(warning)) {
# Special-case the simple warning:
warning <- "> Pulling data into R"
}
# Evaluate `expr` on a Table object and compare with `expected`
expect_warning(
via_table <- rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = arrow_table(tbl)))
),
warning
)
expect_equal(via_table, expected, ...)
}
#' Assert that Arrow dplyr methods error in the same way as methods on data.frame
#'
#' Comparing the error message generated when running expressions on R objects
#' against the error message generated by running the same expression on Arrow
#' Tables and RecordBatches.
#'
#' @param expr A dplyr pipeline which must have `.input` as its start
#' @param tbl A tibble or data.frame which will be substituted for `.input`
#' @param ... additional arguments, passed to `expect_error()`
compare_dplyr_error <- function(expr, tbl, ...) {
# ensure we have supplied tbl
force(tbl)
expr <- rlang::enquo(expr)
msg <- tryCatch(
rlang::eval_tidy(expr, rlang::new_data_mask(rlang::env(.input = tbl))),
error = function(e) {
msg <- conditionMessage(e)
if (grepl("Problem while computing", msg[1])) {
msg <- conditionMessage(e$parent)
}
# The error here is of the form:
#
# Problem with `filter()` .input `..1`.
# x object 'b_var' not found
# ℹ Input `..1` is `chr == b_var`.
#
# but what we really care about is the `x` block
# so (temporarily) let's pull those blocks out when we find them
pattern <- i18ize_error_messages()
if (grepl(pattern, msg)) {
msg <- sub(paste0("^.*(", pattern, ").*$"), "\\1", msg)
}
msg
}
)
# make sure msg is a character object (i.e. there has been an error)
# If it did not error, we would get a data.frame or whatever
# This expectation will tell us "dplyr on data.frame errored is not TRUE"
expect_true(identical(typeof(msg), "character"), label = "dplyr on data.frame errored")
expect_error(
rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = record_batch(tbl)))
),
msg,
...
)
expect_error(
rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = arrow_table(tbl)))
),
msg,
...
)
}
#' Comparing the output of running expressions on R vectors against the same
#' expression run on Arrow Arrays and ChunkedArrays.
#'
#' @param expr A vectorized R expression which must have `.input` as its start
#' @param vec A vector which will be substituted for `.input`
#' @param skip_array The skip message to show (if you should skip the Array test)
#' @param skip_chunked_array The skip message to show (if you should skip the ChunkedArray test)
#' @param ignore_attr Ignore differences in specified attributes?
#' @param ... additional arguments, passed to `expect_as_vector()`
compare_expression <- function(expr,
vec,
skip_array = NULL,
skip_chunked_array = NULL,
ignore_attr = FALSE,
...) {
expr <- rlang::enquo(expr)
expected <- rlang::eval_tidy(expr, rlang::new_data_mask(rlang::env(.input = vec)))
skip_msg <- NULL
if (is.null(skip_array)) {
via_array <- rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = Array$create(vec)))
)
expect_as_vector(via_array, expected, ignore_attr, ...)
} else {
skip_msg <- c(skip_msg, skip_array)
}
if (is.null(skip_chunked_array)) {
# split input vector into two to exercise ChunkedArray with >1 chunk
split_vector <- split_vector_as_list(vec)
via_chunked <- rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = ChunkedArray$create(split_vector[[1]], split_vector[[2]])))
)
expect_as_vector(via_chunked, expected, ignore_attr, ...)
} else {
skip_msg <- c(skip_msg, skip_chunked_array)
}
if (!is.null(skip_msg)) {
skip(paste(skip_msg, collapse = "\n"))
}
}
#' Comparing the error message generated when running expressions on R objects
#' against the error message generated by running the same expression on Arrow
#' Arrays and ChunkedArrays.
#'
#' @param expr An R expression which must have `.input` as its start
#' @param vec A vector which will be substituted for `.input`
#' @param skip_array The skip message to show (if you should skip the Array test)
#' @param skip_chunked_array The skip message to show (if you should skip the ChunkedArray test)
#' @param ... additional arguments, passed to `expect_error()`
compare_expression_error <- function(expr,
vec,
skip_array = NULL,
skip_chunked_array = NULL,
...) {
expr <- rlang::enquo(expr)
msg <- tryCatch(
rlang::eval_tidy(expr, rlang::new_data_mask(rlang::env(.input = vec))),
error = function(e) {
msg <- conditionMessage(e)
pattern <- i18ize_error_messages()
if (grepl(pattern, msg)) {
msg <- sub(paste0("^.*(", pattern, ").*$"), "\\1", msg)
}
msg
}
)
expect_true(identical(typeof(msg), "character"), label = "vector errored")
skip_msg <- NULL
if (is.null(skip_array)) {
expect_error(
rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = Array$create(vec)))
),
msg,
...
)
} else {
skip_msg <- c(skip_msg, skip_array)
}
if (is.null(skip_chunked_array)) {
# split input vector into two to exercise ChunkedArray with >1 chunk
split_vector <- split_vector_as_list(vec)
expect_error(
rlang::eval_tidy(
expr,
rlang::new_data_mask(rlang::env(.input = ChunkedArray$create(split_vector[[1]], split_vector[[2]])))
),
msg,
...
)
} else {
skip_msg <- c(skip_msg, skip_chunked_array)
}
if (!is.null(skip_msg)) {
skip(paste(skip_msg, collapse = "\n"))
}
}
split_vector_as_list <- function(vec) {
vec_split <- length(vec) %/% 2
vec1 <- vec[seq(from = min(1, length(vec) - 1), to = min(length(vec) - 1, vec_split), by = 1)]
vec2 <- vec[seq(from = min(length(vec), vec_split + 1), to = length(vec), by = 1)]
list(vec1, vec2)
}
expect_across_equal <- function(across_expr, expected, tbl) {
expect_identical(expand_across(as_adq(tbl), across_expr), new_quosures(expected))
}
expect_arrow_eval_error <- function(expr, ..., .data = example_data) {
mask <- arrow_mask(as_adq(.data))
expect_error(arrow_eval({{ expr }}, mask), ...)
}