
Andy Grove @ DataFusion Meetup
March 25, 2024



My Interest in DataFusion

● Past
○ DataFusion started as a personal side project in 2017 with the overly ambitious goal of building a 

more modern version of Apache Spark
■ See https://andygrove.io/2018/01/rust-is-for-big-data/ for more context

○ The project quickly pivoted to become an in-process query engine
○ I started Ballista in 2019 to have another go at building a distributed query engine, using 

DataFusion as a foundation, but mostly stopped contributing at the start of 2023
● Future

○ I am excited about the DataFusion Comet project for accelerating Spark

https://andygrove.io/2018/01/rust-is-for-big-data/


● DataFusion Comet
○ Accelerating Apache Spark with DataFusion

● DataFusion Python Bindings
○ Making DataFusion available as a foundation for Python systems

● DataFusion Ballista
○ Arrow-native Spark alternative

Topics For Today



DataFusion Comet: Spark Native Engine



Apache Spark
● Spark is one of the most important data systems today

○ Open sourced in 2010
○ Used by 80% of the Fortune 500
○ More than 2,000 contributors
○ Mature query planner and optimizer

● The problems with Spark
○ Largely row-based volcano model, with code-gen/JIT to boost performance
○ JVM (slow startup, GC overhead, Scala-native)
○ Proprietary memory format



Apache Spark Accelerators
● Open-source (all Arrow-friendly to varying degrees)

○ Delegating to C++ code
■ Apache Gluten + Velox
■ NVIDIA Spark RAPIDS

○ Delegating to Rust code
■ Apache DataFusion Comet
■ Blaze

● Closed-source
○ Databricks Photon (C++)



DataFusion Comet Architecture



High-level work areas
● Fuzz testing to ensure compatibility with Spark
● Benchmarking against Apache Spark and Apache Gluten/Velox
● Supporting more operators, expressions, data types, etc over time
● Supporting multiple Spark versions
● Establish a release process for both Java and Rust artifacts



● Testing at scale
○ Large potential user base

■ Spark users can test existing pipelines with Comet very easily
○ Large and diverse datasets
○ Fuzz testing will likely expose some bugs
○ Memory management / spill to disk will get tested extensively

● Drive requirements for other JVM acceleration use cases
○ Creates a new audience for DataFusion
○ Does it make sense to develop official Java bindings for DataFusion?

● Help stabilize DataFusion’s public API

How will Comet help DataFusion?



DataFusion Python Bindings



DataFusion Python Bindings Overview
● Features

○ Exposes DataFusion’s DataFrame and SQL interfaces in Python
○ Also exposes logical query plan & optimizer
○ Substrait support

● Use Cases
○ Can be used as an general purpose library for querying data
○ Suitable for use as a SQL query planner and optimizer for other projects

■ Supports all queries in TPC-DS
■ Dask SQL switched from Apache Calcite to DataFusion Python in 2022
■ Could be used to add SQL support for others e.g. Pandas, Polars, cuDF (GPU)



DataFusion Python Bindings Overview
● Comparison to similar projects

○ Ibis is becoming a popular Python DataFrame library that can bind to multiple engines (including 
DataFusion), either via Python APIs or through SQL generation

○ Ibis also supports SQL -> DataFrame via sqlglot, and may support query optimization in the future
■ Collaboration potential?

○ Polars is a popular Python DataFrame library also based on Arrow. It has basic SQL support but 
does not support any of the official TPC-H SQL queries yet (as of version 0.19.13)

https://ibis-project.org/
https://pola.rs/


Example Usage: Executing SQL



Logical Plan



Logical Plan Variants



Example: Dask SQL
● Dask is a Python library for parallel and distributed computing
● Dask SQL adds SQL support to Dask

○ Originally used Calcite for SQL parsing and planning
○ Switched to DataFusion in 2022
○ Python code creates a DataFusion logical plan and then transpiles that plan to Dask operations



Contributing
● For the project to gain traction, we need more users & maintainers

○ Evangelism is needed to promote DataFusion as a mature SQL query planner and optimizer for the 
Python ecosystem

○ Competing with Ibis or Polars as a DataFrame API does not seem to be the best use of time
● Areas to contribute:

○ Improve support for Ibis integration
○ Improve the documentation & examples

■ Particularly for the query planner use case
○ Blog posts
○ Testing and bug reporting



Apache DataFusion Ballista



Ballista Overview
● Distributed SQL query engine
● Inspired by Apache Spark, but with some key differences

○ Arrow-native
■ Arrow Flight SQL support
■ Arrow Flight interface between processes
■ Arrow IPC used for shuffle files

○ Implemented in Rust, but language-agnostic architecture
■ Query plans represented in protobuf format
■ Pluggable execution engine (defaults to DataFusion)
■ Could support WASM, Python UDFs with some engineering effort



Ballista Architecture



Ballista Status
● Ballista has much potential but has failed to gain much traction
● Possible reasons

○ Only a small percentage of companies have need for distributed compute?
○ Too much investment to reach feature parity with other systems, such as Apache Spark?
○ Project requires skill sets across multiple areas?

■ Devops
■ Distributed Systems
■ Scheduling
■ Query Engines
■ UI (React)
■ Python

○ Poor documentation?
○ Companies are working on forks of the project, rather than extending?



Thanks for listening!
● Contact details

○ LinkedIn: https://www.linkedin.com/in/andygrove/
○ Email: agrove@apache.org

● Social Media
○ X: @andygrove_io
○ BlueSky: https://bsky.app/profile/andygrove.bsky.social

https://www.linkedin.com/in/andygrove/
mailto:agrove@apache.org
https://bsky.app/profile/andygrove.bsky.social

