-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
dfschema.rs
1143 lines (1025 loc) · 37.7 KB
/
dfschema.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! DFSchema is an extended schema struct that DataFusion uses to provide support for
//! fields with optional relation names.
use std::collections::{HashMap, HashSet};
use std::convert::TryFrom;
use std::sync::Arc;
use crate::error::{DataFusionError, Result, SchemaError};
use crate::{field_not_found, Column, TableReference};
use arrow::compute::can_cast_types;
use arrow::datatypes::{DataType, Field, Schema, SchemaRef};
use std::fmt::{Display, Formatter};
/// A reference-counted reference to a `DFSchema`.
pub type DFSchemaRef = Arc<DFSchema>;
/// DFSchema wraps an Arrow schema and adds relation names
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct DFSchema {
/// Fields
fields: Vec<DFField>,
/// Additional metadata in form of key value pairs
metadata: HashMap<String, String>,
}
impl DFSchema {
/// Creates an empty `DFSchema`
pub fn empty() -> Self {
Self {
fields: vec![],
metadata: HashMap::new(),
}
}
#[deprecated(since = "7.0.0", note = "please use `new_with_metadata` instead")]
/// Create a new `DFSchema`
pub fn new(fields: Vec<DFField>) -> Result<Self> {
Self::new_with_metadata(fields, HashMap::new())
}
/// Create a new `DFSchema`
pub fn new_with_metadata(
fields: Vec<DFField>,
metadata: HashMap<String, String>,
) -> Result<Self> {
let mut qualified_names = HashSet::new();
let mut unqualified_names = HashSet::new();
for field in &fields {
if let Some(qualifier) = field.qualifier() {
if !qualified_names.insert((qualifier, field.name())) {
return Err(DataFusionError::SchemaError(
SchemaError::DuplicateQualifiedField {
qualifier: qualifier.to_string(),
name: field.name().to_string(),
},
));
}
} else if !unqualified_names.insert(field.name()) {
return Err(DataFusionError::SchemaError(
SchemaError::DuplicateUnqualifiedField {
name: field.name().to_string(),
},
));
}
}
// check for mix of qualified and unqualified field with same unqualified name
// note that we need to sort the contents of the HashSet first so that errors are
// deterministic
let mut qualified_names = qualified_names
.iter()
.map(|(l, r)| (l.to_owned(), r.to_owned()))
.collect::<Vec<(&String, &String)>>();
qualified_names.sort_by(|a, b| {
let a = format!("{}.{}", a.0, a.1);
let b = format!("{}.{}", b.0, b.1);
a.cmp(&b)
});
for (qualifier, name) in &qualified_names {
if unqualified_names.contains(name) {
return Err(DataFusionError::SchemaError(
SchemaError::AmbiguousReference {
qualifier: Some(qualifier.to_string()),
name: name.to_string(),
},
));
}
}
Ok(Self { fields, metadata })
}
/// Create a `DFSchema` from an Arrow schema
pub fn try_from_qualified_schema(qualifier: &str, schema: &Schema) -> Result<Self> {
Self::new_with_metadata(
schema
.fields()
.iter()
.map(|f| DFField::from_qualified(qualifier, f.clone()))
.collect(),
schema.metadata().clone(),
)
}
/// Create a new schema that contains the fields from this schema followed by the fields
/// from the supplied schema. An error will be returned if there are duplicate field names.
pub fn join(&self, schema: &DFSchema) -> Result<Self> {
let mut fields = self.fields.clone();
let mut metadata = self.metadata.clone();
fields.extend_from_slice(schema.fields().as_slice());
metadata.extend(schema.metadata.clone());
Self::new_with_metadata(fields, metadata)
}
/// Modify this schema by appending the fields from the supplied schema, ignoring any
/// duplicate fields.
pub fn merge(&mut self, other_schema: &DFSchema) {
if other_schema.fields.is_empty() {
return;
}
for field in other_schema.fields() {
// skip duplicate columns
let duplicated_field = match field.qualifier() {
Some(q) => self.field_with_name(Some(q.as_str()), field.name()).is_ok(),
// for unqualified columns, check as unqualified name
None => self.field_with_unqualified_name(field.name()).is_ok(),
};
if !duplicated_field {
self.fields.push(field.clone());
}
}
self.metadata.extend(other_schema.metadata.clone())
}
/// Get a list of fields
pub fn fields(&self) -> &Vec<DFField> {
&self.fields
}
/// Returns an immutable reference of a specific `Field` instance selected using an
/// offset within the internal `fields` vector
pub fn field(&self, i: usize) -> &DFField {
&self.fields[i]
}
#[deprecated(since = "8.0.0", note = "please use `index_of_column_by_name` instead")]
/// Find the index of the column with the given unqualified name
pub fn index_of(&self, name: &str) -> Result<usize> {
for i in 0..self.fields.len() {
if self.fields[i].name() == name {
return Ok(i);
} else {
// Now that `index_of` is deprecated an error is thrown if
// a fully qualified field name is provided.
match &self.fields[i].qualifier {
Some(qualifier) => {
if (qualifier.to_owned() + "." + self.fields[i].name()) == name {
return Err(DataFusionError::Plan(format!(
"Fully qualified field name '{name}' was supplied to `index_of` \
which is deprecated. Please use `index_of_column_by_name` instead"
)));
}
}
None => (),
}
}
}
Err(field_not_found(None, name, self))
}
pub fn index_of_column_by_name(
&self,
qualifier: Option<&str>,
name: &str,
) -> Result<usize> {
let mut matches = self
.fields
.iter()
.enumerate()
.filter(|(_, field)| match (qualifier, &field.qualifier) {
// field to lookup is qualified.
// current field is qualified and not shared between relations, compare both
// qualifier and name.
(Some(q), Some(field_q)) => q == field_q && field.name() == name,
// field to lookup is qualified but current field is unqualified.
(Some(qq), None) => {
// the original field may now be aliased with a name that matches the
// original qualified name
let table_ref = TableReference::parse_str(field.name().as_str());
match table_ref {
TableReference::Partial { schema, table } => {
schema == qq && table == name
}
TableReference::Full { schema, table, .. } => {
schema == qq && table == name
}
_ => false,
}
}
// field to lookup is unqualified, no need to compare qualifier
(None, Some(_)) | (None, None) => field.name() == name,
})
.map(|(idx, _)| idx);
match matches.next() {
None => Err(field_not_found(
qualifier.map(|s| s.to_string()),
name,
self,
)),
Some(idx) => match matches.next() {
None => Ok(idx),
// found more than one matches
Some(_) => Err(DataFusionError::Internal(format!(
"Ambiguous reference to qualified field named '{}.{}'",
qualifier.unwrap_or("<unqualified>"),
name
))),
},
}
}
/// Find the index of the column with the given qualifier and name
pub fn index_of_column(&self, col: &Column) -> Result<usize> {
self.index_of_column_by_name(col.relation.as_deref(), &col.name)
}
/// Find the field with the given name
pub fn field_with_name(
&self,
qualifier: Option<&str>,
name: &str,
) -> Result<&DFField> {
if let Some(qualifier) = qualifier {
self.field_with_qualified_name(qualifier, name)
} else {
self.field_with_unqualified_name(name)
}
}
/// Find all fields having the given qualifier
pub fn fields_with_qualified(&self, qualifier: &str) -> Vec<&DFField> {
self.fields
.iter()
.filter(|field| field.qualifier().map(|q| q.eq(qualifier)).unwrap_or(false))
.collect()
}
/// Find all fields match the given name
pub fn fields_with_unqualified_name(&self, name: &str) -> Vec<&DFField> {
self.fields
.iter()
.filter(|field| field.name() == name)
.collect()
}
/// Find the field with the given name
pub fn field_with_unqualified_name(&self, name: &str) -> Result<&DFField> {
let matches = self.fields_with_unqualified_name(name);
match matches.len() {
0 => Err(field_not_found(None, name, self)),
1 => Ok(matches[0]),
_ => Err(DataFusionError::SchemaError(
SchemaError::AmbiguousReference {
qualifier: None,
name: name.to_string(),
},
)),
}
}
/// Find the field with the given qualified name
pub fn field_with_qualified_name(
&self,
qualifier: &str,
name: &str,
) -> Result<&DFField> {
let idx = self.index_of_column_by_name(Some(qualifier), name)?;
Ok(self.field(idx))
}
/// Find the field with the given qualified column
pub fn field_from_column(&self, column: &Column) -> Result<&DFField> {
match &column.relation {
Some(r) => self.field_with_qualified_name(r, &column.name),
None => self.field_with_unqualified_name(&column.name),
}
}
/// Check to see if unqualified field names matches field names in Arrow schema
pub fn matches_arrow_schema(&self, arrow_schema: &Schema) -> bool {
self.fields
.iter()
.zip(arrow_schema.fields().iter())
.all(|(dffield, arrowfield)| dffield.name() == arrowfield.name())
}
/// Check to see if fields in 2 Arrow schemas are compatible
pub fn check_arrow_schema_type_compatible(
&self,
arrow_schema: &Schema,
) -> Result<()> {
let self_arrow_schema: Schema = self.into();
self_arrow_schema
.fields()
.iter()
.zip(arrow_schema.fields().iter())
.try_for_each(|(l_field, r_field)| {
if !can_cast_types(r_field.data_type(), l_field.data_type()) {
Err(DataFusionError::Plan(
format!("Column {} (type: {}) is not compatible with column {} (type: {})",
r_field.name(),
r_field.data_type(),
l_field.name(),
l_field.data_type())))
} else {
Ok(())
}
})
}
/// Returns true if the two schemas have the same qualified named
/// fields with the same data types. Returns false otherwise.
///
/// This is a specialized version of Eq that ignores differences
/// in nullability and metadata.
pub fn equivalent_names_and_types(&self, other: &Self) -> bool {
if self.fields().len() != other.fields().len() {
return false;
}
let self_fields = self.fields().iter();
let other_fields = other.fields().iter();
self_fields.zip(other_fields).all(|(f1, f2)| {
f1.qualifier() == f2.qualifier()
&& f1.name() == f2.name()
&& Self::datatype_is_semantically_equal(f1.data_type(), f2.data_type())
})
}
/// Returns true of two [`DataType`]s are semantically equal (same
/// name and type), ignoring both metadata and nullability.
///
/// request to upstream: <https://github.com/apache/arrow-rs/issues/3199>
fn datatype_is_semantically_equal(dt1: &DataType, dt2: &DataType) -> bool {
// check nested fields
match (dt1, dt2) {
(DataType::Dictionary(k1, v1), DataType::Dictionary(k2, v2)) => {
Self::datatype_is_semantically_equal(k1.as_ref(), k2.as_ref())
&& Self::datatype_is_semantically_equal(v1.as_ref(), v2.as_ref())
}
(DataType::List(f1), DataType::List(f2))
| (DataType::LargeList(f1), DataType::LargeList(f2))
| (DataType::FixedSizeList(f1, _), DataType::FixedSizeList(f2, _))
| (DataType::Map(f1, _), DataType::Map(f2, _)) => {
Self::field_is_semantically_equal(f1, f2)
}
(DataType::Struct(fields1), DataType::Struct(fields2))
| (DataType::Union(fields1, _, _), DataType::Union(fields2, _, _)) => {
let iter1 = fields1.iter();
let iter2 = fields2.iter();
fields1.len() == fields2.len() &&
// all fields have to be the same
iter1
.zip(iter2)
.all(|(f1, f2)| Self::field_is_semantically_equal(f1, f2))
}
_ => dt1 == dt2,
}
}
fn field_is_semantically_equal(f1: &Field, f2: &Field) -> bool {
f1.name() == f2.name()
&& Self::datatype_is_semantically_equal(f1.data_type(), f2.data_type())
}
/// Strip all field qualifier in schema
pub fn strip_qualifiers(self) -> Self {
DFSchema {
fields: self
.fields
.into_iter()
.map(|f| f.strip_qualifier())
.collect(),
..self
}
}
/// Replace all field qualifier with new value in schema
pub fn replace_qualifier(self, qualifier: &str) -> Self {
DFSchema {
fields: self
.fields
.into_iter()
.map(|f| DFField::from_qualified(qualifier, f.field))
.collect(),
..self
}
}
/// Get list of fully-qualified field names in this schema
pub fn field_names(&self) -> Vec<String> {
self.fields
.iter()
.map(|f| f.qualified_name())
.collect::<Vec<_>>()
}
/// Get metadata of this schema
pub fn metadata(&self) -> &HashMap<String, String> {
&self.metadata
}
}
impl From<DFSchema> for Schema {
/// Convert DFSchema into a Schema
fn from(df_schema: DFSchema) -> Self {
Schema::new_with_metadata(
df_schema.fields.into_iter().map(|f| f.field).collect(),
df_schema.metadata,
)
}
}
impl From<&DFSchema> for Schema {
/// Convert DFSchema reference into a Schema
fn from(df_schema: &DFSchema) -> Self {
Schema::new_with_metadata(
df_schema.fields.iter().map(|f| f.field.clone()).collect(),
df_schema.metadata.clone(),
)
}
}
/// Create a `DFSchema` from an Arrow schema
impl TryFrom<Schema> for DFSchema {
type Error = DataFusionError;
fn try_from(schema: Schema) -> Result<Self, Self::Error> {
Self::new_with_metadata(
schema
.fields()
.iter()
.map(|f| DFField::from(f.clone()))
.collect(),
schema.metadata().clone(),
)
}
}
impl From<DFSchema> for SchemaRef {
fn from(df_schema: DFSchema) -> Self {
SchemaRef::new(df_schema.into())
}
}
/// Convenience trait to convert Schema like things to DFSchema and DFSchemaRef with fewer keystrokes
pub trait ToDFSchema
where
Self: Sized,
{
/// Attempt to create a DSSchema
#[allow(clippy::wrong_self_convention)]
fn to_dfschema(self) -> Result<DFSchema>;
/// Attempt to create a DSSchemaRef
#[allow(clippy::wrong_self_convention)]
fn to_dfschema_ref(self) -> Result<DFSchemaRef> {
Ok(Arc::new(self.to_dfschema()?))
}
}
impl ToDFSchema for Schema {
#[allow(clippy::wrong_self_convention)]
fn to_dfschema(self) -> Result<DFSchema> {
DFSchema::try_from(self)
}
}
impl ToDFSchema for SchemaRef {
#[allow(clippy::wrong_self_convention)]
fn to_dfschema(self) -> Result<DFSchema> {
// Attempt to use the Schema directly if there are no other
// references, otherwise clone
match Self::try_unwrap(self) {
Ok(schema) => DFSchema::try_from(schema),
Err(schemaref) => DFSchema::try_from(schemaref.as_ref().clone()),
}
}
}
impl ToDFSchema for Vec<DFField> {
fn to_dfschema(self) -> Result<DFSchema> {
DFSchema::new_with_metadata(self, HashMap::new())
}
}
impl Display for DFSchema {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
write!(
f,
"fields:[{}], metadata:{:?}",
self.fields
.iter()
.map(|field| field.qualified_name())
.collect::<Vec<String>>()
.join(", "),
self.metadata
)
}
}
/// Provides schema information needed by certain methods of `Expr`
/// (defined in the datafusion-common crate).
///
/// Note that this trait is implemented for &[DFSchema] which is
/// widely used in the DataFusion codebase.
pub trait ExprSchema {
/// Is this column reference nullable?
fn nullable(&self, col: &Column) -> Result<bool>;
/// What is the datatype of this column?
fn data_type(&self, col: &Column) -> Result<&DataType>;
}
// Implement `ExprSchema` for `Arc<DFSchema>`
impl<P: AsRef<DFSchema>> ExprSchema for P {
fn nullable(&self, col: &Column) -> Result<bool> {
self.as_ref().nullable(col)
}
fn data_type(&self, col: &Column) -> Result<&DataType> {
self.as_ref().data_type(col)
}
}
impl ExprSchema for DFSchema {
fn nullable(&self, col: &Column) -> Result<bool> {
Ok(self.field_from_column(col)?.is_nullable())
}
fn data_type(&self, col: &Column) -> Result<&DataType> {
Ok(self.field_from_column(col)?.data_type())
}
}
/// DFField wraps an Arrow field and adds an optional qualifier
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct DFField {
/// Optional qualifier (usually a table or relation name)
qualifier: Option<String>,
/// Arrow field definition
field: Field,
}
impl DFField {
/// Creates a new `DFField`
pub fn new(
qualifier: Option<&str>,
name: &str,
data_type: DataType,
nullable: bool,
) -> Self {
DFField {
qualifier: qualifier.map(|s| s.to_owned()),
field: Field::new(name, data_type, nullable),
}
}
/// Create an unqualified field from an existing Arrow field
pub fn from(field: Field) -> Self {
Self {
qualifier: None,
field,
}
}
/// Create a qualified field from an existing Arrow field
pub fn from_qualified(qualifier: &str, field: Field) -> Self {
Self {
qualifier: Some(qualifier.to_owned()),
field,
}
}
/// Returns an immutable reference to the `DFField`'s unqualified name
pub fn name(&self) -> &String {
self.field.name()
}
/// Returns an immutable reference to the `DFField`'s data-type
pub fn data_type(&self) -> &DataType {
self.field.data_type()
}
/// Indicates whether this `DFField` supports null values
pub fn is_nullable(&self) -> bool {
self.field.is_nullable()
}
/// Returns a string to the `DFField`'s qualified name
pub fn qualified_name(&self) -> String {
if let Some(qualifier) = &self.qualifier {
format!("{}.{}", qualifier, self.field.name())
} else {
self.field.name().to_owned()
}
}
/// Builds a qualified column based on self
pub fn qualified_column(&self) -> Column {
Column {
relation: self.qualifier.clone(),
name: self.field.name().to_string(),
}
}
/// Builds an unqualified column based on self
pub fn unqualified_column(&self) -> Column {
Column {
relation: None,
name: self.field.name().to_string(),
}
}
/// Get the optional qualifier
pub fn qualifier(&self) -> Option<&String> {
self.qualifier.as_ref()
}
/// Get the arrow field
pub fn field(&self) -> &Field {
&self.field
}
/// Return field with qualifier stripped
pub fn strip_qualifier(mut self) -> Self {
self.qualifier = None;
self
}
}
#[cfg(test)]
mod tests {
use super::*;
use arrow::datatypes::DataType;
#[test]
fn qualifier_in_name() -> Result<()> {
let schema = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
// lookup with unqualified name "t1.c0"
let err = schema.index_of_column_by_name(None, "t1.c0").err().unwrap();
assert_eq!(
"Schema error: No field named 't1.c0'. Valid fields are 't1'.'c0', 't1'.'c1'.",
&format!("{err}")
);
Ok(())
}
#[test]
fn from_unqualified_field() {
let field = Field::new("c0", DataType::Boolean, true);
let field = DFField::from(field);
assert_eq!("c0", field.name());
assert_eq!("c0", field.qualified_name());
}
#[test]
fn from_qualified_field() {
let field = Field::new("c0", DataType::Boolean, true);
let field = DFField::from_qualified("t1", field);
assert_eq!("c0", field.name());
assert_eq!("t1.c0", field.qualified_name());
}
#[test]
fn from_unqualified_schema() -> Result<()> {
let schema = DFSchema::try_from(test_schema_1())?;
assert_eq!("fields:[c0, c1], metadata:{}", schema.to_string());
Ok(())
}
#[test]
fn from_qualified_schema() -> Result<()> {
let schema = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
assert_eq!("fields:[t1.c0, t1.c1], metadata:{}", schema.to_string());
Ok(())
}
#[test]
fn from_qualified_schema_into_arrow_schema() -> Result<()> {
let schema = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
let arrow_schema: Schema = schema.into();
let expected = "Field { name: \"c0\", data_type: Boolean, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }, \
Field { name: \"c1\", data_type: Boolean, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }";
assert_eq!(expected, arrow_schema.to_string());
Ok(())
}
#[test]
fn join_qualified() -> Result<()> {
let left = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
let right = DFSchema::try_from_qualified_schema("t2", &test_schema_1())?;
let join = left.join(&right)?;
assert_eq!(
"fields:[t1.c0, t1.c1, t2.c0, t2.c1], metadata:{}",
join.to_string()
);
// test valid access
assert!(join.field_with_qualified_name("t1", "c0").is_ok());
assert!(join.field_with_qualified_name("t2", "c0").is_ok());
// test invalid access
assert!(join.field_with_unqualified_name("c0").is_err());
assert!(join.field_with_unqualified_name("t1.c0").is_err());
assert!(join.field_with_unqualified_name("t2.c0").is_err());
Ok(())
}
#[test]
fn join_qualified_duplicate() -> Result<()> {
let left = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
let right = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
let join = left.join(&right);
assert!(join.is_err());
assert_eq!(
"Schema error: Schema contains duplicate \
qualified field name \'t1\'.\'c0\'",
&format!("{}", join.err().unwrap())
);
Ok(())
}
#[test]
fn join_unqualified_duplicate() -> Result<()> {
let left = DFSchema::try_from(test_schema_1())?;
let right = DFSchema::try_from(test_schema_1())?;
let join = left.join(&right);
assert!(join.is_err());
assert_eq!(
"Schema error: Schema contains duplicate \
unqualified field name \'c0\'",
&format!("{}", join.err().unwrap())
);
Ok(())
}
#[test]
fn join_mixed() -> Result<()> {
let left = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
let right = DFSchema::try_from(test_schema_2())?;
let join = left.join(&right)?;
assert_eq!(
"fields:[t1.c0, t1.c1, c100, c101], metadata:{}",
join.to_string()
);
// test valid access
assert!(join.field_with_qualified_name("t1", "c0").is_ok());
assert!(join.field_with_unqualified_name("c0").is_ok());
assert!(join.field_with_unqualified_name("c100").is_ok());
assert!(join.field_with_name(None, "c100").is_ok());
// test invalid access
assert!(join.field_with_unqualified_name("t1.c0").is_err());
assert!(join.field_with_unqualified_name("t1.c100").is_err());
assert!(join.field_with_qualified_name("", "c100").is_err());
Ok(())
}
#[test]
fn join_mixed_duplicate() -> Result<()> {
let left = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
let right = DFSchema::try_from(test_schema_1())?;
let join = left.join(&right);
assert!(join.is_err());
assert_eq!(
"Schema error: Schema contains qualified \
field name \'t1\'.\'c0\' and unqualified field name \'c0\' which would be ambiguous",
&format!("{}", join.err().unwrap())
);
Ok(())
}
#[allow(deprecated)]
#[test]
fn helpful_error_messages() -> Result<()> {
let schema = DFSchema::try_from_qualified_schema("t1", &test_schema_1())?;
let expected_help = "Valid fields are \'t1\'.\'c0\', \'t1\'.\'c1\'.";
// Pertinent message parts
let expected_err_msg = "Fully qualified field name \'t1.c0\'";
assert!(schema
.field_with_qualified_name("x", "y")
.unwrap_err()
.to_string()
.contains(expected_help));
assert!(schema
.field_with_unqualified_name("y")
.unwrap_err()
.to_string()
.contains(expected_help));
assert!(schema
.index_of("y")
.unwrap_err()
.to_string()
.contains(expected_help));
assert!(schema
.index_of("t1.c0")
.unwrap_err()
.to_string()
.contains(expected_err_msg));
Ok(())
}
#[test]
fn select_without_valid_fields() {
let schema = DFSchema::empty();
let err = schema
.index_of_column_by_name(Some("t1"), "c0")
.err()
.unwrap();
assert_eq!("Schema error: No field named 't1'.'c0'.", &format!("{err}"));
// the same check without qualifier
let err = schema.index_of_column_by_name(None, "c0").err().unwrap();
assert_eq!("Schema error: No field named 'c0'.", &format!("{err}"));
}
#[test]
fn equivalent_names_and_types() {
let field1_i16_t = DFField::from(Field::new("f1", DataType::Int16, true));
let field1_i16_t_meta = DFField::from(
field1_i16_t
.field()
.clone()
.with_metadata(test_metadata_n(2)),
);
let field1_i16_t_qualified =
DFField::from_qualified("foo", field1_i16_t.field().clone());
let field1_i16_f = DFField::from(Field::new("f1", DataType::Int16, false));
let field1_i32_t = DFField::from(Field::new("f1", DataType::Int32, true));
let field2_i16_t = DFField::from(Field::new("f2", DataType::Int16, true));
let field3_i16_t = DFField::from(Field::new("f3", DataType::Int16, true));
let dict =
DataType::Dictionary(Box::new(DataType::Int32), Box::new(DataType::Utf8));
let field_dict_t = DFField::from(Field::new("f_dict", dict.clone(), true));
let field_dict_f = DFField::from(Field::new("f_dict", dict, false));
let list_t = DFField::from(Field::new(
"f_list",
DataType::List(Box::new(field1_i16_t.field().clone())),
true,
));
let list_f = DFField::from(Field::new(
"f_list",
DataType::List(Box::new(field1_i16_f.field().clone())),
false,
));
let list_f_name = DFField::from(Field::new(
"f_list",
DataType::List(Box::new(field2_i16_t.field().clone())),
false,
));
let struct_t = DFField::from(Field::new(
"f_struct",
DataType::Struct(vec![field1_i16_t.field().clone()]),
true,
));
let struct_f = DFField::from(Field::new(
"f_struct",
DataType::Struct(vec![field1_i16_f.field().clone()]),
false,
));
let struct_f_meta = DFField::from(Field::new(
"f_struct",
DataType::Struct(vec![field1_i16_t_meta.field().clone()]),
false,
));
let struct_f_type = DFField::from(Field::new(
"f_struct",
DataType::Struct(vec![field1_i32_t.field().clone()]),
false,
));
// same
TestCase {
fields1: vec![&field1_i16_t],
fields2: vec![&field1_i16_t],
expected: true,
}
.run();
// same but metadata is different, should still be true
TestCase {
fields1: vec![&field1_i16_t_meta],
fields2: vec![&field1_i16_t],
expected: true,
}
.run();
// different name
TestCase {
fields1: vec![&field1_i16_t],
fields2: vec![&field2_i16_t],
expected: false,
}
.run();
// different type
TestCase {
fields1: vec![&field1_i16_t],
fields2: vec![&field1_i32_t],
expected: false,
}
.run();
// different nullability
TestCase {
fields1: vec![&field1_i16_t],
fields2: vec![&field1_i16_f],
expected: true,
}
.run();
// different qualifier
TestCase {
fields1: vec![&field1_i16_t],
fields2: vec![&field1_i16_t_qualified],
expected: false,
}
.run();
// different name after first
TestCase {
fields1: vec![&field2_i16_t, &field1_i16_t],
fields2: vec![&field2_i16_t, &field3_i16_t],
expected: false,
}
.run();
// different number
TestCase {
fields1: vec![&field1_i16_t, &field2_i16_t],
fields2: vec![&field1_i16_t],
expected: false,
}
.run();
// dictionary
TestCase {
fields1: vec![&field_dict_t],
fields2: vec![&field_dict_t],
expected: true,
}
.run();
// dictionary (different nullable)
TestCase {
fields1: vec![&field_dict_t],
fields2: vec![&field_dict_f],
expected: true,
}
.run();
// dictionary (wrong type)
TestCase {
fields1: vec![&field_dict_t],
fields2: vec![&field1_i16_t],
expected: false,
}
.run();
// list (different embedded nullability)
TestCase {
fields1: vec![&list_t],
fields2: vec![&list_f],
expected: true,
}
.run();
// list (different sub field names)