-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathplot_learning_curves.py
38 lines (32 loc) · 1.16 KB
/
plot_learning_curves.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='plot learnign curve.')
parser.add_argument('history_file', type=str,
help="path to history file.")
parser.add_argument('--plot_style', nargs='*', default=[],
help='plot styles to be used')
parser.add_argument('--save', default='',
help='save the plot in the given file')
args = parser.parse_args()
if args.plot_style:
plt.style.use(args.plot_style)
df = pd.read_csv(args.history_file)
# Plot MAE
fig, ax = plt.subplots()
ax.plot(df['epoch']+1, df['mae'], label='train', color='blue')
ax.set_xlabel('epoch')
ax.set_ylabel('MAE (years)', color='blue')
ax.set_ylim((8, 14))
axt = ax.twinx()
# Plot learning rate
axt.step(df['epoch']+1, df['lr'], label='train', alpha=0.4, color='k')
axt.set_yscale('log')
axt.set_ylabel('learning rate', alpha=0.4, color='k')
axt.set_ylim((1e-8, 1e-2))
if args.save:
plt.savefig(args.save)
else:
plt.show()