-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
207 lines (168 loc) · 6.35 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
'''
test Multi-armed bandits with UCB1 policy and Thompson Sampling
author: An Yan, June 2017
'''
import numpy as np
import argparse
import math
import random
import matplotlib.pyplot as plt
import time
from arm import arm
from UCB import UCB
from posterior import posterior
'''
init and start game for one round
'''
class MAB:
def __init__(self,p_list,args,alpha=2):
self.k = 5
self.T = args.t_rounds
self.alpha = alpha # UCB confidence interval parameter
self.bandts = list() # init all arms
self.p_list=p_list
for p in p_list:
self.bandts.append(arm(p))
# the seen rewards won every round.
self.rewards = list() #[0]*self.T
self.N = [0]*self.k # N_i(t), cumulated # times arm i got pulled
# counter of # of success and failures of each arm, dictionary
self.SF_counter = dict(zip(np.arange(self.k),[(0,0)]*self.k))
self.UCB = [0]*self.k # maintain a list of UCB values of all arms at time t
self.hat_mu_list = [0]*self.k # list of currentl round of hat_mu
self.var_list = list() # maintain a list of beta vars at time t for all arms
self.mu_best = max(p_list)
self.best_arm= np.argmax(p_list)
self.progress_best_arm = list() # record N5,t/t
self.regrets = list() #[0]*self.T # total regrets after each round
self.N_matrix=np.zeros((self.T,self.k))
def _start_game(self):
for t in np.arange(self.T):
hat_mu_list = list() # for all estimated mus
var_list = list()
print("round ------",t)
for i in np.arange(self.k):
# draw hat_mu according to Beta(S_i(t)+a, F_i(t)+b)
a,b = self.SF_counter[i][0]+1, self.SF_counter[i][1]+1
hat_mu_list.append(posterior(a,b).sample())
var_list.append(posterior(a,b).get_var())
self.hat_mu_list = hat_mu_list
self.var_list=var_list
# get UCB values of each arm and get max arm index,
pulled_arm = int(UCB(t,hat_mu_list,self.N,self.var_list,self.alpha).pull_max_arm())
print("selected arm---------:",pulled_arm)
# get reward
reward = self.bandts[pulled_arm].draw_sample()
self.rewards.append(reward)
# get regret
self.regrets.append(self.get_regret(t))
# update progress on best arm
self.get_best_arm_progress(t)
# alarm when best arm progress N5,t/t is above 0.95
# if self.progress_best_arm[-1]>0.95:
# print("first time above 0.95",t)
# break
# update Success and Failure count
success,fail = (0,0)
if reward ==1:
success = self.SF_counter[pulled_arm][0]+1
fail = self.SF_counter[pulled_arm][1]
self.SF_counter[pulled_arm]=(success,fail)
else:
fail = self.SF_counter[pulled_arm][1]+1
success = self.SF_counter[pulled_arm][0]
self.SF_counter[pulled_arm]=(success,fail)
# self.SF_counter[pulled_arm]=(success,fail)
print("self.SF_counter[pulled_arm]=(success,fail)",(success,fail))
# update N_i,t,N_matrix [T,k]
self.N[pulled_arm]+=1
self.N_matrix[t,:]=self.N
self.plot_regret()
self.plot_cf()
self.plot_arm_progress()
'''
total expected regrets E(R_t)= T * mu_best - E ( sum_T Xt )
= sum_K (delta_i) * E( N_i(T) )
'''
def get_regret(self,t):
regret = ((t+1) * self.mu_best - np.sum(self.rewards))/float(t+1)
return regret
'''
return N_5,t / t
'''
def get_best_arm_progress(self,t):
self.progress_best_arm.append(self.N[self.best_arm]/float(t+1))
def plot_regret(self):
plt.figure(figsize=(8,6))
x = np.arange(self.T)
y = self.regrets
plt.plot(x,y)
plt.title('average regret VS time')
plt.xlabel('time')
plt.ylabel('average regret')
filename='regret_time_'+str(self.T)+'.png'
plt.savefig(filename)
'''
plot confidence interval at each time t
'''
def plot_cf(self):
x=np.arange(1,self.k+1)
print(self.var_list)
plt.figure(figsize=(6,4))
plt.errorbar(x, self.hat_mu_list, yerr=self.var_list,fmt='o',label='estimated mean')
plt.scatter(x, self.p_list, marker='*',label='true mean',color='g')
plt.xlim(0, 6)
title='confidence interval, T='+str(self.T)
plt.ylabel("confidence interval")
plt.xlabel('arm')
plt.title(title)
plt.legend(loc=9, bbox_to_anchor=(0.5, -0.1))
plt.xlim(0, 6)
filename='conf_intv_'+str(self.T)+'.png'
plt.savefig(filename,bbox_inches="tight")
plt.close()
'''
for each arm a, make a plot where the x-axis indexes
the time t and the y-axis shows Na,t/t
'''
def plot_arm_progress(self):
fig = plt.figure(figsize=(8,6))
x_range = np.array(range(0,self.T))
plt.title("Ni_t VS time")
plt.xlabel("time")
plt.ylabel("Ni_t")
# plt.grid()
for i in range(self.k):
plt.plot(x_range,self.N_matrix[:,i],'-',label='arm='+str(i+1))
# plt.legend(loc=9, bbox_to_anchor=(0.5, -0.1))
plt.legend(loc='best')
filename = 'arm+progress_'+str(self.T)+'.png'
fig.savefig(filename,bbox_inches="tight")
plt.close()
def reset_game(self):
return None
def main():
args = get_args()
# a list of p for Berboulli
p_list = [1/6.,1/2.,2/3.,3/4.,5/6.]
alpha = 1
mab = MAB(p_list,args,alpha)
mab._start_game()
print("mu_list",mab.hat_mu_list)
print("final progress",mab.progress_best_arm[-10:])
print("regrets",mab.regrets[-10:])
print("first time get to 0.95-------")
N_list = mab.progress_best_arm
alarm=0
for n in range(len(N_list)):
if N_list[n]>0.95:
print(n)
alarm=n
break
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("-t","--t_rounds",action = "store",type=int,
default = 2000, help= "input the number of rounds run")
return parser.parse_args()
if __name__=='__main__':
main()