-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbbox_util.py
executable file
·300 lines (204 loc) · 7.76 KB
/
bbox_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import cv2
import numpy as np
def draw_rect(im, cords, color = None):
"""Draw the rectangle on the image
Parameters
----------
im : numpy.ndarray
numpy image
cords: numpy.ndarray
Numpy array containing bounding boxes of shape `N X 4` where N is the
number of bounding boxes and the bounding boxes are represented in the
format `x1 y1 x2 y2`
Returns
-------
numpy.ndarray
numpy image with bounding boxes drawn on it
"""
im = im.copy()
cords = cords[:,:4]
cords = cords.reshape(-1,4)
if not color:
color = [255,255,255]
for cord in cords:
pt1, pt2 = (cord[0], cord[1]) , (cord[2], cord[3])
pt1 = int(pt1[0]), int(pt1[1])
pt2 = int(pt2[0]), int(pt2[1])
im = cv2.rectangle(im.copy(), pt1, pt2, color, int(max(im.shape[:2])/200))
return im
def bbox_area(bbox):
return (bbox[:,2] - bbox[:,0])*(bbox[:,3] - bbox[:,1])
def clip_box(bbox, clip_box, alpha):
"""Clip the bounding boxes to the borders of an image
Parameters
----------
bbox: numpy.ndarray
Numpy array containing bounding boxes of shape `N X 4` where N is the
number of bounding boxes and the bounding boxes are represented in the
format `x1 y1 x2 y2`
clip_box: numpy.ndarray
An array of shape (4,) specifying the diagonal co-ordinates of the image
The coordinates are represented in the format `x1 y1 x2 y2`
alpha: float
If the fraction of a bounding box left in the image after being clipped is
less than `alpha` the bounding box is dropped.
Returns
-------
numpy.ndarray
Numpy array containing **clipped** bounding boxes of shape `N X 4` where N is the
number of bounding boxes left are being clipped and the bounding boxes are represented in the
format `x1 y1 x2 y2`
"""
ar_ = (bbox_area(bbox))
x_min = np.maximum(bbox[:,0], clip_box[0]).reshape(-1,1)
y_min = np.maximum(bbox[:,1], clip_box[1]).reshape(-1,1)
x_max = np.minimum(bbox[:,2], clip_box[2]).reshape(-1,1)
y_max = np.minimum(bbox[:,3], clip_box[3]).reshape(-1,1)
bbox = np.hstack((x_min, y_min, x_max, y_max, bbox[:,4:]))
delta_area = ((ar_ - bbox_area(bbox))/ar_)
mask = (delta_area < (1 - alpha)).astype(int)
bbox = bbox[mask == 1,:]
return bbox
def rotate_im(image, angle):
"""Rotate the image.
Rotate the image such that the rotated image is enclosed inside the tightest
rectangle. The area not occupied by the pixels of the original image is colored
black.
Parameters
----------
image : numpy.ndarray
numpy image
angle : float
angle by which the image is to be rotated
Returns
-------
numpy.ndarray
Rotated Image
"""
# grab the dimensions of the image and then determine the
# centre
(h, w) = image.shape[:2]
(cX, cY) = (w // 2, h // 2)
# grab the rotation matrix (applying the negative of the
# angle to rotate clockwise), then grab the sine and cosine
# (i.e., the rotation components of the matrix)
M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
# perform the actual rotation and return the image
image = cv2.warpAffine(image, M, (nW, nH))
# image = cv2.resize(image, (w,h))
return image
def get_corners(bboxes):
"""Get corners of bounding boxes
Parameters
----------
bboxes: numpy.ndarray
Numpy array containing bounding boxes of shape `N X 4` where N is the
number of bounding boxes and the bounding boxes are represented in the
format `x1 y1 x2 y2`
returns
-------
numpy.ndarray
Numpy array of shape `N x 8` containing N bounding boxes each described by their
corner co-ordinates `x1 y1 x2 y2 x3 y3 x4 y4`
"""
width = (bboxes[:,2] - bboxes[:,0]).reshape(-1,1)
height = (bboxes[:,3] - bboxes[:,1]).reshape(-1,1)
x1 = bboxes[:,0].reshape(-1,1)
y1 = bboxes[:,1].reshape(-1,1)
x2 = x1 + width
y2 = y1
x3 = x1
y3 = y1 + height
x4 = bboxes[:,2].reshape(-1,1)
y4 = bboxes[:,3].reshape(-1,1)
corners = np.hstack((x1,y1,x2,y2,x3,y3,x4,y4))
return corners
def rotate_box(corners,angle, cx, cy, h, w):
"""Rotate the bounding box.
Parameters
----------
corners : numpy.ndarray
Numpy array of shape `N x 8` containing N bounding boxes each described by their
corner co-ordinates `x1 y1 x2 y2 x3 y3 x4 y4`
angle : float
angle by which the image is to be rotated
cx : int
x coordinate of the center of image (about which the box will be rotated)
cy : int
y coordinate of the center of image (about which the box will be rotated)
h : int
height of the image
w : int
width of the image
Returns
-------
numpy.ndarray
Numpy array of shape `N x 8` containing N rotated bounding boxes each described by their
corner co-ordinates `x1 y1 x2 y2 x3 y3 x4 y4`
"""
corners = corners.reshape(-1,2)
corners = np.hstack((corners, np.ones((corners.shape[0],1), dtype = type(corners[0][0]))))
M = cv2.getRotationMatrix2D((cx, cy), angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cx
M[1, 2] += (nH / 2) - cy
# Prepare the vector to be transformed
calculated = np.dot(M,corners.T).T
calculated = calculated.reshape(-1,8)
return calculated
def get_enclosing_box(corners):
"""Get an enclosing box for ratated corners of a bounding box
Parameters
----------
corners : numpy.ndarray
Numpy array of shape `N x 8` containing N bounding boxes each described by their
corner co-ordinates `x1 y1 x2 y2 x3 y3 x4 y4`
Returns
-------
numpy.ndarray
Numpy array containing enclosing bounding boxes of shape `N X 4` where N is the
number of bounding boxes and the bounding boxes are represented in the
format `x1 y1 x2 y2`
"""
x_ = corners[:,[0,2,4,6]]
y_ = corners[:,[1,3,5,7]]
xmin = np.min(x_,1).reshape(-1,1)
ymin = np.min(y_,1).reshape(-1,1)
xmax = np.max(x_,1).reshape(-1,1)
ymax = np.max(y_,1).reshape(-1,1)
final = np.hstack((xmin, ymin, xmax, ymax,corners[:,8:]))
return final
def letterbox_image(img, inp_dim):
'''resize image with unchanged aspect ratio using padding
Parameters
----------
img : numpy.ndarray
Image
inp_dim: tuple(int)
shape of the reszied image
Returns
-------
numpy.ndarray:
Resized image
'''
inp_dim = (inp_dim, inp_dim)
img_w, img_h = img.shape[1], img.shape[0]
w, h = inp_dim
new_w = int(img_w * min(w/img_w, h/img_h))
new_h = int(img_h * min(w/img_w, h/img_h))
resized_image = cv2.resize(img, (new_w,new_h))
canvas = np.full((inp_dim[1], inp_dim[0], 3), 0)
canvas[(h-new_h)//2:(h-new_h)//2 + new_h,(w-new_w)//2:(w-new_w)//2 + new_w, :] = resized_image
return canvas