From 3d83c896fd8b237c53003888e35a4d792c1e5389 Mon Sep 17 00:00:00 2001 From: Sandeep Krishnamurthy Date: Tue, 11 Sep 2018 16:20:40 -0700 Subject: [PATCH] Fix broken URLs (#12508) --- docs/architecture/rnn_interface.md | 4 ++-- docs/install/index.md | 2 +- docs/install/windows_setup.md | 4 ++-- docs/tutorials/onnx/export_mxnet_to_onnx.md | 2 +- python/mxnet/contrib/onnx/mx2onnx/export_model.py | 3 ++- python/mxnet/contrib/onnx/onnx2mx/import_model.py | 3 ++- python/mxnet/contrib/text/embedding.py | 2 +- 7 files changed, 11 insertions(+), 9 deletions(-) diff --git a/docs/architecture/rnn_interface.md b/docs/architecture/rnn_interface.md index 42338763ce63..dc0b6a7958ef 100644 --- a/docs/architecture/rnn_interface.md +++ b/docs/architecture/rnn_interface.md @@ -1,6 +1,6 @@ # Survey of Existing Interfaces and Implementations -Commonly used deep learning libraries with good RNN/LSTM support include [Theano](http://deeplearning.net/software/theano/library/scan.html) and its wrappers [Lasagne](http://lasagne.readthedocs.org/en/latest/modules/layers/recurrent.html) and [Keras](http://keras.io/layers/recurrent/); [CNTK](https://cntk.codeplex.com/); [TensorFlow](https://www.tensorflow.org/versions/master/tutorials/recurrent/index.html); and various implementations in Torch, such as [this well-known character-level language model tutorial](https://github.com/karpathy/char-rnn), [this](https://github.com/Element-Research/rnn). +Commonly used deep learning libraries with good RNN/LSTM support include [Theano](http://deeplearning.net/software/theano/library/scan.html) and its wrappers [Lasagne](http://lasagne.readthedocs.org/en/latest/modules/layers/recurrent.html) and [Keras](http://keras.io/layers/recurrent/); [CNTK](https://cntk.codeplex.com/); [TensorFlow](https://www.tensorflow.org/tutorials/sequences/recurrent); and various implementations in Torch, such as [this well-known character-level language model tutorial](https://github.com/karpathy/char-rnn), [this](https://github.com/Element-Research/rnn). In this document, we present a comparative analysis of the approaches taken by these libraries. @@ -93,7 +93,7 @@ The low-level API for recurrent connection seem to be a *delay node*. But I'm no ## TensorFlow -The [current example of RNNLM](https://www.tensorflow.org/versions/master/tutorials/recurrent/index.html#recurrent-neural-networks) in TensorFlow uses explicit unrolling for a predefined number of time steps. The white-paper mentions that an advanced control flow API (Theano's scan-like) is planned. +The [current example of RNNLM](https://www.tensorflow.org/tutorials/sequences/recurrent#recurrent-neural-networks) in TensorFlow uses explicit unrolling for a predefined number of time steps. The white-paper mentions that an advanced control flow API (Theano's scan-like) is planned. ## Next Steps diff --git a/docs/install/index.md b/docs/install/index.md index 4a6af31cee3c..3a697ae20eeb 100644 --- a/docs/install/index.md +++ b/docs/install/index.md @@ -272,7 +272,7 @@ Follow the four steps in this [docker documentation](https://docs.docker.com/eng If you skip this step, you need to use *sudo* each time you invoke Docker. -**Step 3** Install *nvidia-docker-plugin* following the [installation instructions](https://github.com/NVIDIA/nvidia-docker/wiki/Installation). *nvidia-docker-plugin* is required to enable the usage of GPUs from the docker containers. +**Step 3** Install *nvidia-docker-plugin* following the [installation instructions](https://github.com/NVIDIA/nvidia-docker/wiki). *nvidia-docker-plugin* is required to enable the usage of GPUs from the docker containers. **Step 4** Pull the MXNet docker image. diff --git a/docs/install/windows_setup.md b/docs/install/windows_setup.md index 99ce7f63e850..c974eeb858b0 100755 --- a/docs/install/windows_setup.md +++ b/docs/install/windows_setup.md @@ -55,7 +55,7 @@ These commands produce a library called ```mxnet.dll``` in the ```./build/Releas Next, we install ```graphviz``` library that we use for visualizing network graphs you build on MXNet. We will also install [Jupyter Notebook](http://jupyter.readthedocs.io/) used for running MXNet tutorials and examples. - Install ```graphviz``` by downloading MSI installer from [Graphviz Download Page](https://graphviz.gitlab.io/_pages/Download/Download_windows.html). **Note** Make sure to add graphviz executable path to PATH environment variable. Refer [here for more details](http://stackoverflow.com/questions/35064304/runtimeerror-make-sure-the-graphviz-executables-are-on-your-systems-path-aft) -- Install ```Jupyter``` by installing [Anaconda for Python 2.7](https://www.continuum.io/downloads) +- Install ```Jupyter``` by installing [Anaconda for Python 2.7](https://www.anaconda.com/download/) **Note** Do not install Anaconda for Python 3.5. MXNet has few compatibility issue with Python 3.5.   @@ -69,7 +69,7 @@ We have installed MXNet core library. Next, we will install MXNet interface pack ## Install MXNet for Python 1. Install ```Python``` using windows installer available [here](https://www.python.org/downloads/release/python-2712/). -2. Install ```Numpy``` using windows installer available [here](http://scipy.org/install.html). +2. Install ```Numpy``` using windows installer available [here](https://scipy.org/index.html). 3. Next, we install Python package interface for MXNet. You can find the Python interface package for [MXNet on GitHub](https://github.com/dmlc/mxnet/tree/master/python/mxnet). ```bash diff --git a/docs/tutorials/onnx/export_mxnet_to_onnx.md b/docs/tutorials/onnx/export_mxnet_to_onnx.md index a9c03bed8b12..dc34bd520b43 100644 --- a/docs/tutorials/onnx/export_mxnet_to_onnx.md +++ b/docs/tutorials/onnx/export_mxnet_to_onnx.md @@ -55,7 +55,7 @@ Help on function export_model in module mxnet.contrib.onnx.mx2onnx.export_model: export_model(sym, params, input_shape, input_type=, onnx_file_path=u'model.onnx', verbose=False) Exports the MXNet model file, passed as a parameter, into ONNX model. Accepts both symbol,parameter objects as well as json and params filepaths as input. - Operator support and coverage - https://cwiki.apache.org/confluence/display/MXNET/ONNX + Operator support and coverage - https://cwiki.apache.org/confluence/display/MXNET/MXNet-ONNX+Integration Parameters ---------- diff --git a/python/mxnet/contrib/onnx/mx2onnx/export_model.py b/python/mxnet/contrib/onnx/mx2onnx/export_model.py index 33292bf664a7..e5158051d6f4 100644 --- a/python/mxnet/contrib/onnx/mx2onnx/export_model.py +++ b/python/mxnet/contrib/onnx/mx2onnx/export_model.py @@ -36,7 +36,8 @@ def export_model(sym, params, input_shape, input_type=np.float32, onnx_file_path='model.onnx', verbose=False): """Exports the MXNet model file, passed as a parameter, into ONNX model. Accepts both symbol,parameter objects as well as json and params filepaths as input. - Operator support and coverage - https://cwiki.apache.org/confluence/display/MXNET/ONNX + Operator support and coverage - + https://cwiki.apache.org/confluence/display/MXNET/MXNet-ONNX+Integration Parameters ---------- diff --git a/python/mxnet/contrib/onnx/onnx2mx/import_model.py b/python/mxnet/contrib/onnx/onnx2mx/import_model.py index e190c3bdadc0..b8d3bf28ee2f 100644 --- a/python/mxnet/contrib/onnx/onnx2mx/import_model.py +++ b/python/mxnet/contrib/onnx/onnx2mx/import_model.py @@ -23,7 +23,8 @@ def import_model(model_file): """Imports the ONNX model file, passed as a parameter, into MXNet symbol and parameters. - Operator support and coverage - https://cwiki.apache.org/confluence/display/MXNET/ONNX + Operator support and coverage - + https://cwiki.apache.org/confluence/display/MXNET/MXNet-ONNX+Integration Parameters ---------- diff --git a/python/mxnet/contrib/text/embedding.py b/python/mxnet/contrib/text/embedding.py index 38defb4b90bc..277f78222922 100644 --- a/python/mxnet/contrib/text/embedding.py +++ b/python/mxnet/contrib/text/embedding.py @@ -490,7 +490,7 @@ class GloVe(_TokenEmbedding): License for pre-trained embeddings: - https://opendatacommons.org/licenses/pddl/ + https://fedoraproject.org/wiki/Licensing/PDDL Parameters