diff --git a/tutorials/kdd22/Session 3 Approximate Nearest Neighbor Search in PECOS.ipynb b/tutorials/kdd22/Session 3 Approximate Nearest Neighbor Search in PECOS.ipynb
index 21b54aa..89e076b 100644
--- a/tutorials/kdd22/Session 3 Approximate Nearest Neighbor Search in PECOS.ipynb
+++ b/tutorials/kdd22/Session 3 Approximate Nearest Neighbor Search in PECOS.ipynb
@@ -1,69 +1,92 @@
{
"cells": [
+ {
+ "cell_type": "markdown",
+ "id": "30e3e801-3659-4455-b405-5a2b083ea952",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "# Approximate Nearest Neighbor (ANN) Search in PECOS "
+ ]
+ },
{
"cell_type": "markdown",
"id": "e5073aac",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "## Introduction\n",
+ "Recall that PECOS is a scalable ML library for predictions on enormous and correlated output space. Therefore, we also support inference of embedding-based models such as dual-encoders, which is often formulated as a Maximum Inner Product Search (**MIPS**) or equivalently, an approximate nearest neighbor (**ANN**) search problem.\n",
+ "\n",
+ "In PECOS, we implemented a state-of-the-art graph-based ANN search algorithm, namely **H**ierarchical **N**avigable **S**mall **W**orld (**HNSW**) model. The life-cycle of HNSW can be divided into twp steps:\n",
+ "* *Training*: given user-provided database vectors, build the HNSW graph data structures for indexing;\n",
+ "* *Prediction*: given any query vector, return the top-K approximate nearest vectors indexed in the database.\n",
+ "\n",
+ "More specifically, the **search (i.e., inference)** procedure of HNSW can be summarized as:\n",
+ "* For each layer, conduct best first search traversal. The best candidate serves as an initial point to next layer;\n",
+ "* Traverse from top layer (course-grain graph, long-range link) to bottom layer (fine-grain graph, short-range link);\n",
+ "* The bottom layer graph contains all database items as the nodes.\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2eaba286-135c-4694-9756-638c8b3b1169",
"metadata": {},
"source": [
- "# Approximate Nearest Neighbor (ANN) Search in PECOS \n",
- "\n",
- "PECOS provides the efficient approach for **approximate nearest neighbor (ANN) search**. More specifically, after training an hierarchical navigable small world (HNSW) model (or buildling the **PECOS-HNSW indexer**) with a corpus of vectors, PECOS supports to efficiently infer top-K approximated nearest indexed vectors for an arbitrary query vector. In this part of the tutorial, we will demonstrate how to use PECOS-HNSW tackle the approximate nearest neighbor (ANN) search problem and how to integrate HNSW with PECOS XMR models.\n",
- "\n",
- "#### HNSW at a glimpse\n",
- "The search procedure of HNSW can be summarized as:\n",
- "* traverse from top layer (course-grain graph, long-range link) to bottom layer (fine-grain graph, short-range link)\n",
- "* best first search traversal on each graph, where the best candidate serves as initial to next layer\n",
- "
\n",
- "\n",
- "\n",
"## Highlight of PECOS-HNSW\n",
+ "In this part of tutorial, we introduce the usage of PECOS-HNSW to tackle ANN search problem, and highlight some key functionalities and features in PECOS-HNSW:\n",
"\n",
- "* Support both sparse and dense input features\n",
- "* Support SIMD instructions (SSE, AVX256, and AVX512)\n",
- "* Modularity implementation\n",
- "\n",
- "## Comparison of PECOS and NMSLIB on the sparse data\n",
- "\n",
- "#### Disclaimer \n",
- "The benchmarking results listed in this notebook are based on an `r5dn-24xlarge` AWS instance with 96 Intel(R) Xeon(R) Platinum 8259CL CPUs @ 2.50GHz. With distinct environments, the magnitude of improvments could be also different.\n",
+ "* support inference on both sparse and dense input features;\n",
+ "* support SIMD instructions (AVX, AVX256, and AVX512) and select the best available one in runtime;\n",
+ "* achieve new SOTA results compared to other popular graph-based ANN libraries (e.g., NMSLIB and HNSWLIB).\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "94b45789-b24f-4ed5-8d9c-0568c2d4d1cc",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "## Benchmarking PECOS-HNSW with NMSLIB/HNSWLIB\n",
"\n",
- "#### Results\n",
- "* We compare two implementations of HNSW: `PECOS` and `NMSLIB` on a sparse dataset (i.e., RCV1).\n",
- "* For RCV1, the instances in training/test set are `781,265` and `23,149`, respectively. The feature dimension is `47,236`.\n",
- "* The HNSW index is constructed under `M=16` and `efConstruction=500`.\n",
- "* From the table below, we see that, under similar Recall@10, `PECOS` achieves `[88%,93%]` speedup compared to the `NMSLIB` package.\n",
+ "### Disclaimer \n",
+ "We follow [ANN-Benchmark](https://github.com/erikbern/ann-benchmarks) evaluation protocol, which conducts inference on each test query sequentially (**batch_size=1**) with the **single-thread** setup. \n",
+ "The benchmarking results are based on an r5dn-24xlarge (**w/ avx512 supports**) AWS instance with 96 Intel(R) Xeon(R) Platinum 8259CL CPUs @ 2.50GHz. With distinct environments, the magnitude of improvements could be also different.\n",
"\n",
- "| M=16, efC=500 | | | HNSW (PECOS) | | | HNSW (NMSLIB) | speedup (PECOS/NMSLIB) |\n",
- "|:-------------:|:---------:|:-----------------------:|:------------------:|:---------:|:-----------------------:|:------------------:|:----------------------------:|\n",
- "| efS | Recall@10 | Throughput (#query/sec) | Latency (ms/query) | Recall@10 | Throughput (#query/sec) | Latency (ms/query) | |\n",
- "| 10 | 0.7733 | 5250.297 | 0.1905 | 0.7790 | 2710.256 | 0.3690 | 93.72% |\n",
- "| 20 | 0.8545 | 3677.292 | 0.2719 | 0.8581 | 1924.505 | 0.5196 | 91.08% |\n",
- "| 40 | 0.9043 | 2409.959 | 0.4149 | 0.9055 | 1271.085 | 0.7867 | 89.60% |\n",
- "| 80 | 0.9325 | 1508.349 | 0.6630 | 0.9326 | 800.999 | 1.2484 | 88.31% |\n",
- "| 120 | 0.9434 | 1125.047 | 0.8889 | 0.9426 | 597.873 | 1.6726 | 88.17% |\n",
- "| 200 | 0.9533 | 763.752 | 1.3093 | 0.9523 | 404.518 | 2.4721 | 88.81% |\n",
- "| 400 | 0.9621 | 433.872 | 2.3048 | 0.9608 | 229.553 | 4.3563 | 89.01% |\n",
- "| 600 | 0.9657 | 305.747 | 3.2707 | 0.9644 | 161.879 | 6.1775 | 88.87% |\n",
- "| 800 | 0.9678 | 237.651 | 4.2078 | 0.9663 | 124.806 | 8.0124 | 90.42% |\n",
+ "
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
"\n",
- "## Hands-on Tutorial\n",
+ "### Results on *RCV1-47236-angular*\n",
"\n",
- "The life cycle of a PECOS-HNSW model consists of two stages:\n",
+ "* For RCV1, the instances in training/test set are 781,265 and 23,149, respectively. The feature dimension is 47,236.\n",
+ "* PECOS-HNSW achieves an average of **1.9x** speedup compared to the NMSLIB package.\n",
"\n",
- "* building the indexer (training)\n",
- "* inference (testing).\n",
+ "### Results on on *SIFT-128-euclidean*\n",
"\n",
- "### Install PECOS through Python PIP"
+ "* For SIFT, the instances in training/test set are 1,000,000 and 10,000, respectively. The feature dimension is 128.\n",
+ "* PECOS-HNSW achieved an average of **1.3x** speedup compared to the HNSWLIB package.\n",
+ "* PECOS-HNSW++ (ongoing work) achieved an average of **3x** speedup compared to the HNSWLIB package."
]
},
{
- "cell_type": "code",
- "execution_count": null,
- "id": "f6df49a3",
- "metadata": {},
- "outputs": [],
+ "cell_type": "markdown",
+ "id": "d74d7466-e379-4378-9992-19f3bdb09ccc",
+ "metadata": {
+ "tags": []
+ },
"source": [
- "! pip install libpecos"
+ "## Hands-on Tutorial"
]
},
{
@@ -76,37 +99,10 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"id": "140a0d24",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "--2022-07-15 21:03:07-- https://archive.org/download/pecos-dataset/ann-benchmarks/rcv1-angular-47236.tar.gz\n",
- "Resolving archive.org (archive.org)... 207.241.224.2\n",
- "Connecting to archive.org (archive.org)|207.241.224.2|:443... connected.\n",
- "HTTP request sent, awaiting response... 302 Found\n",
- "Location: https://ia802308.us.archive.org/21/items/pecos-dataset/ann-benchmarks/rcv1-angular-47236.tar.gz [following]\n",
- "--2022-07-15 21:03:07-- https://ia802308.us.archive.org/21/items/pecos-dataset/ann-benchmarks/rcv1-angular-47236.tar.gz\n",
- "Resolving ia802308.us.archive.org (ia802308.us.archive.org)... 207.241.228.48\n",
- "Connecting to ia802308.us.archive.org (ia802308.us.archive.org)|207.241.228.48|:443... connected.\n",
- "HTTP request sent, awaiting response... 200 OK\n",
- "Length: 317972212 (303M) [application/octet-stream]\n",
- "Saving to: ‘rcv1-angular-47236.tar.gz’\n",
- "\n",
- "100%[======================================>] 317,972,212 11.0MB/s in 40s \n",
- "\n",
- "2022-07-15 21:03:47 (7.68 MB/s) - ‘rcv1-angular-47236.tar.gz’ saved [317972212/317972212]\n",
- "\n",
- "rcv1-angular-47236/\n",
- "rcv1-angular-47236/X.trn.npz\n",
- "rcv1-angular-47236/X.tst.npz\n",
- "rcv1-angular-47236/Y.tst.npy\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"! wget https://archive.org/download/pecos-dataset/ann-benchmarks/rcv1-angular-47236.tar.gz\n",
"! tar -zxvf ./rcv1-angular-47236.tar.gz"
@@ -114,7 +110,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 1,
"id": "46dc982b",
"metadata": {},
"outputs": [
@@ -128,7 +124,9 @@
],
"source": [
"import numpy as np\n",
+ "import os, time\n",
"from pecos.utils import smat_util\n",
+ "from pecos.ann.hnsw import HNSW\n",
"X_trn = smat_util.load_matrix(\"./rcv1-angular-47236/X.trn.npz\").astype(np.float32)\n",
"X_tst = smat_util.load_matrix(\"./rcv1-angular-47236/X.tst.npz\").astype(np.float32)\n",
"Y_tst = smat_util.load_matrix(\"./rcv1-angular-47236/Y.tst.npy\")\n",
@@ -144,18 +142,22 @@
"source": [
"### Training Indexer\n",
"\n",
- "To train a PECOS-HNSW model, training parameters need to be defined in an object of HNSW.TrainParams as the argument train_params. The key parameters of training a PECOS-HNSW model include:\n",
+ "To train a [PECOS-HNSW](https://github.com/amzn/pecos/tree/v0.4.0/pecos/ann/hnsw) model, training parameters need to be defined in an object of [HNSW.TrainParams](https://github.com/amzn/pecos/blob/v0.4.0/pecos/ann/hnsw/model.py#L33) as the argument `train_params`.\n",
+ "\n",
+ "The key parameters of training a [PECOS-HNSW](https://github.com/amzn/pecos/tree/v0.4.0/pecos/ann/hnsw) model include:\n",
"* `M` (default 32): The maximum number of edges per node for each layer. A larger M leads to a larger model size and greater memory consumption. Higher/lower M are more suitable for high/low dimensional data or the pursue of high/low recall.\n",
"* `efC` (default 100): The size of the priority queue for best first search in construction. `efC` can be considered as the trade-off between efficiency and accuracy for indexing. A higher `efC` results in longer construction time but better quality of indexing.\n",
"* `metric_type` (default ip): The distance metric type for ANN search. PECOS-HNSW currently supports Euclidean distance (`l2`); and inner product (`ip`)\n",
"* `threads` (default -1): The number of threads for training, or -1 to use all available cores.\n",
"\n",
- "The parameters for inference can be also decided as the argument pred_params during model construction so that the model can be directly applied for inference without further parameter designation.\n"
+ "Detailed hyper-parameters can be found in the original HNSW paper ([Malkov et al, TPAMI 2018](https://arxiv.org/abs/1603.09320)).\n",
+ "\n",
+ "The parameters for inference can be also decided as the argument `pred_params` during model construction so that the model can be directly applied for inference without further parameter designation.\n"
]
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 2,
"id": "553aaf55",
"metadata": {},
"outputs": [
@@ -163,14 +165,11 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "HNSW Indexer | M 32 efC 100 metric ip | time(s) 11.980276823043823\n"
+ "HNSW Indexer | M 32 efC 100 metric ip | time(s) 12.000147581100464\n"
]
}
],
"source": [
- "import time\n",
- "from pecos.ann.hnsw import HNSW\n",
- "\n",
"M, efC = 32, 100\n",
"metric = \"ip\"\n",
"train_params = HNSW.TrainParams(\n",
@@ -196,7 +195,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 3,
"id": "bf7905f3",
"metadata": {},
"outputs": [],
@@ -214,36 +213,30 @@
"source": [
"### Inference and Evaluation\n",
"\n",
- "To conduct inference with a train HNSW model, prediction parameters need to be defined in an object of HNSW.PredParams as the argument pred_params. The key parameters of inference with a PECOS-HNSW model include:\n",
+ "To conduct inference, prediction parameters need to be defined in an object of [HNSW.PredParams](https://github.com/amzn/pecos/blob/v0.4.0/pecos/ann/hnsw/model.py#L51) as the argument `pred_params`.\n",
"\n",
+ "The key parameters of inference with a PECOS-HNSW model include:\n",
"* `efS` (default 100): The size of the priority queue for best first search during inference. Similar to efC, efS can be considered as the trade-off between search efficiency and accuracy. A higher efS results in more accurate results with slower speed. efS is required to be greater than topk.\n",
"* `topk` (default 10): The number of approximate nearest neighbor to be returned. \n",
"* `threads` (default -1): The number of searchers for parallel inference, -1 to use all available searchers.\n",
"\n",
- "The predict function derives the search results based on a query matrix of shape (# of data points for inference, # of dimentions) and `pred_params`, as well as searchers. The argument `ret_csr` (default `true`) decides the format of returned results as:\n",
+ "Users should also construct `searchers` to avoid memory overhead\n",
+ "```\n",
+ "searchers = model.searchers_create(num_searcher=1) # multiple searchers inference multiple queries in parallel\n",
+ "```\n",
"\n",
- "* If `ret_csr` is false, the returned results would be two matrices of shape (# of data points, topk), which indicate the topk indices in the training corpus and the corresponding distances for each testing instance.\n",
- "* If `ret_csr` is true, the returned results would be a [Compressed Sparse Row (CSR) matrix](https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html) of shape (# of data points, # of points in the training corpus). Each row contains sorted topk distance values at the corresponding columns (i.e., indices in training corpus). The data for each row (i.e., `data[indptr[i]:indptr[i + 1]]`) are also sorted by the distance values.\n",
- "\n"
+ "The predict function derives search results based on a query matrix of shape (# of data points for inference, # of dimensions), `pred_params`, and `searchers`. "
]
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 4,
"id": "e25e31d4",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Prediction Time = 15.7988 seconds.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"pred_params = HNSW.PredParams(efS=100, topk=10)\n",
- "searchers = model.searchers_create(num_searcher=1)\n",
+ "searchers = model.searchers_create(num_searcher=1) # multiple searchers inference multiple queries in parallel\n",
"start_time = time.time()\n",
"indices, distances = model.predict(\n",
" X_tst,\n",
@@ -251,21 +244,33 @@
" searchers=searchers,\n",
" ret_csr=False,\n",
")\n",
- "pred_time = time.time() - start_time\n",
- "print(f\"Prediction Time = {pred_time:.4f} seconds.\")"
+ "pred_time = time.time() - start_time"
]
},
{
"cell_type": "markdown",
- "id": "0ce9aefa",
+ "id": "dc06d282-ba6b-4a57-a963-1203fcc87c63",
"metadata": {},
+ "source": [
+ "The argument `ret_csr` (default `true`) decides the format of returned results as:\n",
+ "\n",
+ "* If `ret_csr` is false, the returned results would be two matrices of shape (# of data points, topk), which indicate the topk indices in the training corpus and the corresponding distances for each testing instance.\n",
+ "* If `ret_csr` is true, the returned results would be a [Compressed Sparse Row (CSR) matrix](https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html) of shape (# of data points, # of points in the training corpus). Each row contains sorted topk distance values at the corresponding columns (i.e., indices in training corpus). The data for each row (i.e., `data[indptr[i]:indptr[i + 1]]`) are also sorted by the distance values."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0ce9aefa",
+ "metadata": {
+ "tags": []
+ },
"source": [
"### Evaluation"
]
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 5,
"id": "38401700",
"metadata": {},
"outputs": [],
@@ -279,7 +284,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 6,
"id": "b0b6d72a",
"metadata": {},
"outputs": [
@@ -287,7 +292,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "HNSW inference | R@10 0.9025 Throughput(q/s) 1465.236 latency(ms/q) 0.6825\n"
+ "HNSW inference | R@10 0.9020 Throughput(q/s) 1478.575 latency(ms/q) 0.6763\n"
]
}
],
@@ -301,14 +306,17 @@
{
"cell_type": "markdown",
"id": "75880f0d",
- "metadata": {},
+ "metadata": {
+ "jp-MarkdownHeadingCollapsed": true,
+ "tags": []
+ },
"source": [
- "## Recall vs Throughput Trade-off"
+ "## Appendix: Recall vs Throughput Trade-off"
]
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 7,
"id": "12bd7fb6",
"metadata": {},
"outputs": [],
@@ -318,9 +326,14 @@
" M_list = [16]\n",
" efC = 500\n",
" topk = 10\n",
- " efS_list = [10, 20, 40, 80, 120, 200, 400, 600, 800]\n",
+ " efS_list = [10, 20, 40, 80, 120, 200, 400, 600]\n",
" for M in M_list:\n",
- " train_params = HNSW.TrainParams(M=M, efC=efC, metric_type=metric, threads=-1)\n",
+ " train_params = HNSW.TrainParams(\n",
+ " M=M,\n",
+ " efC=efC,\n",
+ " metric_type=metric,\n",
+ " threads=-1,\n",
+ " )\n",
" start_time = time.time()\n",
" model = HNSW.train(X_trn, train_params=train_params, pred_params=None)\n",
" print(\"Indexer | M {} efC {} metric {} | train time(s) {}\".format(\n",
@@ -345,7 +358,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 8,
"id": "0b4af0fb",
"metadata": {},
"outputs": [
@@ -353,16 +366,15 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Indexer | M 16 efC 500 metric ip | train time(s) 46.87919640541077\n",
- "inference | efS 10 R@10 0.7733 Throughput(q/s) 5250.297 latency(ms/q) 0.1905\n",
- "inference | efS 20 R@10 0.8545 Throughput(q/s) 3677.292 latency(ms/q) 0.2719\n",
- "inference | efS 40 R@10 0.9043 Throughput(q/s) 2409.959 latency(ms/q) 0.4149\n",
- "inference | efS 80 R@10 0.9325 Throughput(q/s) 1508.349 latency(ms/q) 0.6630\n",
- "inference | efS 120 R@10 0.9434 Throughput(q/s) 1125.047 latency(ms/q) 0.8889\n",
- "inference | efS 200 R@10 0.9533 Throughput(q/s) 763.752 latency(ms/q) 1.3093\n",
- "inference | efS 400 R@10 0.9621 Throughput(q/s) 433.872 latency(ms/q) 2.3048\n",
- "inference | efS 600 R@10 0.9657 Throughput(q/s) 305.747 latency(ms/q) 3.2707\n",
- "inference | efS 800 R@10 0.9678 Throughput(q/s) 237.651 latency(ms/q) 4.2078\n"
+ "Indexer | M 16 efC 500 metric ip | train time(s) 47.05828666687012\n",
+ "inference | efS 10 R@10 0.7737 Throughput(q/s) 5228.054 latency(ms/q) 0.1913\n",
+ "inference | efS 20 R@10 0.8552 Throughput(q/s) 3665.046 latency(ms/q) 0.2728\n",
+ "inference | efS 40 R@10 0.9043 Throughput(q/s) 2406.416 latency(ms/q) 0.4156\n",
+ "inference | efS 80 R@10 0.9320 Throughput(q/s) 1504.624 latency(ms/q) 0.6646\n",
+ "inference | efS 120 R@10 0.9432 Throughput(q/s) 1122.713 latency(ms/q) 0.8907\n",
+ "inference | efS 200 R@10 0.9536 Throughput(q/s) 763.034 latency(ms/q) 1.3106\n",
+ "inference | efS 400 R@10 0.9622 Throughput(q/s) 433.572 latency(ms/q) 2.3064\n",
+ "inference | efS 600 R@10 0.9656 Throughput(q/s) 305.857 latency(ms/q) 3.2695\n"
]
}
],
@@ -370,15 +382,362 @@
"run_pecos(X_trn, X_tst, Y_tst)"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "ccea74a4-ca0d-4839-b1fa-b42ce86aea82",
+ "metadata": {
+ "jp-MarkdownHeadingCollapsed": true,
+ "tags": []
+ },
+ "source": [
+ "## Appendix: Plot Recall vs Throughput Curve "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "cc70d86f-a4fc-46b6-a079-860db59efc96",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_pareto_frontier(Xs, Ys, maxX=True, maxY=True):\n",
+ " '''Pareto frontier selection process'''\n",
+ " sorted_list = sorted([[Xs[i], Ys[i]] for i in range(len(Xs))], reverse=maxY)\n",
+ " pareto_front = [sorted_list[0]]\n",
+ " for pair in sorted_list[1:]:\n",
+ " if maxY:\n",
+ " if pair[1] >= pareto_front[-1][1]:\n",
+ " pareto_front.append(pair)\n",
+ " else:\n",
+ " if pair[1] <= pareto_front[-1][1]:\n",
+ " pareto_front.append(pair)\n",
+ " return pareto_front\n",
+ "\n",
+ "def plot_one(\n",
+ " results_dict,\n",
+ " xlim, ylim, title,\n",
+ " FONTSIZE=28):\n",
+ " import matplotlib.pyplot as plt\n",
+ " f, axs = plt.subplots(1, 1, figsize=(10,10))\n",
+ " for algo_name in results_dict.keys():\n",
+ " algo_dict = results_dict[algo_name]\n",
+ " pareto_front = get_pareto_frontier(algo_dict[\"recall\"], algo_dict[\"throughput\"])\n",
+ " Xs_list, Ys_list = zip(*pareto_front)\n",
+ " axs.plot(\n",
+ " Xs_list,\n",
+ " Ys_list,\n",
+ " label=algo_name,\n",
+ " ms=7, mew=3, lw=3,\n",
+ " color=algo_dict[\"color\"],\n",
+ " linestyle=algo_dict[\"linestyle\"],\n",
+ " marker=algo_dict[\"marker\"],\n",
+ " )\n",
+ " axs.set_xlim([xlim, 1.01])\n",
+ " axs.set_ylim([0.0, ylim])\n",
+ " axs.tick_params(axis='both', which='major', labelsize=FONTSIZE-8)\n",
+ " axs.tick_params(axis='both', which='minor', labelsize=FONTSIZE-8)\n",
+ " axs.set_ylabel(\"Throughoput (#queries/sec)\", fontsize=FONTSIZE-4)\n",
+ " axs.set_xlabel(\"Recall10@10\", fontsize=FONTSIZE-4)\n",
+ " axs.set_title(title, fontsize=FONTSIZE)\n",
+ " axs.legend(fontsize=18)\n",
+ " #axs[i, j].set_legend(loc='upper center', bbox_to_anchor=(0.76, 1.01), ncol=1, fancybox=True, shadow=True, fontsize=FONTSIZE-8)\n",
+ " axs.grid(visible=True, which='major', color='black', linestyle='-')\n",
+ " axs.grid(visible=True, which='minor', color='gray', linestyle='--')\n",
+ " axs.minorticks_on()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4c7927f8-626a-4ac6-a889-47c8bd023954",
+ "metadata": {
+ "jp-MarkdownHeadingCollapsed": true,
+ "tags": []
+ },
+ "source": [
+ "### plot RCV1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "be44342f-f53a-4266-a865-42d1e4f0cc0e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_results_rcv1():\n",
+ " results_dict = {\n",
+ " \"PECOS-HNSW\": {\n",
+ " \"color\": \"blue\",\n",
+ " \"marker\": \"D\",\n",
+ " \"linestyle\": \"-\",\n",
+ " \"recall\": [0.7733, 0.8545, 0.9043, 0.9325, 0.9434, 0.9533, 0.9621, 0.9657, 0.9678],\n",
+ " \"throughput\": [5250.297, 3677.292, 2409.959, 1508.349, 1125.047, 763.752, 433.872, 305.747, 237.651],\n",
+ " },\n",
+ " \"HNSW(NMSLIB)\": {\n",
+ " \"color\": \"black\",\n",
+ " \"marker\": \"o\",\n",
+ " \"linestyle\": \"--\",\n",
+ " \"recall\": [0.7790, 0.8581, 0.9055, 0.9326, 0.9426, 0.9523, 0.9608, 0.9644, 0.9663],\n",
+ " \"throughput\": [2710.256, 1924.505, 1271.085, 800.999, 597.873, 404.518, 229.553, 161.879, 124.806],\n",
+ " }\n",
+ " }\n",
+ " return results_dict"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "d8466781-720d-4eeb-8762-314f08f3c656",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAApMAAAJ/CAYAAAAkkFgEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyde3gU1fnHP28IMSYkQLgoiKgRUQTFGkBBCSgK2oCgYMECEhS19dLW2tpfveIFrfd6oVZEiQIKCgoKKigKqKhcKiiCIgWK3CThGogQQs7vjzO72YTdzW4yJ9nJns/zzJPszJnvvvO+u5M3Z855jyilsFgsFovFYrFYqkJCbRtgsVgsFovFYvEuNpm0WCwWi8VisVQZm0xaLBaLxWKxWKqMTSYtFovFYrFYLFXGJpMWi8VisVgslipjk0mLxWKxWCwWS5WxyaTFUsOIyHwRUSIyv7ZtsVgsFi/j3EuViIyubVviGZtMWowjIj0DvvAVt19EZJOIvC8iN4pIg9q21+JNRGRDiM9YiYjsEJHFIvKEiJwWpe4pInKniHwiIv8TkSJn2yQiH4jIHSJyYoVz/h3w/r+O8v1ODjj3owrHGohItoj8RUTeEJH1AW03RPM+1cH5rgb6ODdM21BxCbf1DKJztIhcLiJjReQrEdkpIodEZJeILBGRf1SMQwh7uorI7SLypoh8KyJbReSgiBSKyPcikhfs/SvRrCciQ0VkhnO9Bxz7VovIRBEZKSL1otG0WDyFUspudjO6AT0BFeG2AehY2zYb9sd851rnhzju88Xo2rbVS5vz2YnkM3YI+EsEeg2Bl4CSCDRLgdeB451zuwYcmxLlddwXcO7wCsc+CffdqSE/HwfsqfDeuS7ExbcdBo6roHEmUBjBuQeAmyqxf2WEdrwBJEfgj9OB/0Sg16i2vyN1cbP3y9jYErFYapbngX8FvG4KnAr8GWgLnAC8LyKnKqUKa8E+i/fZAvQJeH0UcDJwBTAYSAQeE5ENSqlpwQScHq73gHbOrh3Aa8ACR78EaAGc7+ieDAwBvgL+qZT6QkTWoD/Tl4lIulJqb4T2D3N+7gPeqmhawO87gaVAN6Ame/THAunAdqB5BO17A0mVtPkV8Krz+0dKqc0VjqdTdo1fArOBxUA+kAH8GrgJHevnROSAUuqlEO91AJjn6HwPbEP7sjnQEfgdcCJwJfqfhCGhjBaRDsDHQDPgIJAHfABsQj/5ywQuAgaEvXqLxevUdjZrt7q/Ub5ncnSINknoG7yv3W21bbdBf8zH9kya8OsGKumhA64N8O+3IdqkAN8GtMsDGobRrAfkopOrPwXsvzNA49oIr+H8gHMmBDl+PXAV0Caa63bRxwOd9/oZuDXA1txq6j4ToPXbIMe7oXsKO4TR6Ar84mjsAhqEaJdYiS1HA18E2HNmiHZHAaudNj8B7cJoJgJiOj7xuNn7ZWxsdsykJSZQShUDowN2XVxLpljqMEr3Vv3XedlBRI4N0mwM0MH5PU8plauU2hNG87BSKg/IAr4JODQR/UcO4OoITQxs90qQ9xqnlHpdKbU2Qj3XEJFGwLPOy9vQCZsbuvXRCTLAXuDtim2UUouUUr9RSq0MpaOU+oKypx6NCHEPUUqVhLNHKfUL8HTAru4hmt4GnIaO8W+UUqvDaJYoJ/OxWOoiNpm0xBL/Cfj9+HANReQMZyD+KhHZ60yIWCsiL4nIWZWce5SI3CwiH4vIdmcQ/24RWSMiH4nI30WkXZDzIpqFLSK5ARMJTgzXtsJ5G0Qk8A/OvUEmJuS5cS3RICIZIjJaRJY6kx0OiMhPzgSGsJNLKvpMRFqKyOOOfb84eh+LyJXVsTFKvg74vdznTESaAjc4L7cBt0QqqpT6SSn1ccDrjegxjgDdReSEcOeLyFHoR6sA/0M/Uo8lHkU/2p+nlJrkou6v0cNdAN5wkrmq8knA722qoRM4xCa54kFnMs3vnZcfOYmsUUSkhTPxaZqI/Cgi+52JQ5tFZKaIDBaRkH/TpfxEyJ7OvoEi8qFz7zggIv8VkWdC/JNVUa+JiDwqIj843+WfHa3LneNh74MBx0ZX8j55Uo0JZiKSKSK3ici7zj32F2f7n4hMFZFLKjm/3HWISJKI/EFEFolIvoiUisg/q2JbXcKOmbTEEocDfj8UrIGICPAw8FeO/GfoZGcbKSL3KqUeCHL+scCHlPU8+WjobKcAvdBjp0KOlYoFauJaROQCYDrQuMKhVsAgYJCITAeGKaUOVKLVDZiBHl/mIxm4ALhARJ5QSv2lKnZGSbjP2RD0Y06A8UqpfdV8r1eAC9FjHYcDD4Zpexm6Rw1gYiz1ZIlINjAKPS7wRpflRwT8fkRvbJQEjs08HLJV5QR+X74Pcrwb+jsA8I5vp4gkOfuLgW2V9YJGipO8+sZhVqQl+rNzGXCtiFwRwec2QUReRX8mA8lE/wM1SER6KKV+DGHPGeh7zzEBu5PR40MvEpFx6KECtYqInETZk4iKtHa234jIJGBkBPFqgr4fnu2elXUDm0xaYonTA37fEKLN05T1Fn2Fnm27Fv147HT0IPxzgPtFZKdSamyF85+lLPl6HX1j2IxOKo5B3yT6UvZ4sibxTVT41nldcbISlH+0aPRaRORM4H302LDDwAvoCSF7nPe9zfk5ED1R4Tdh5FoAM53f7wQWose3dQbucY7fJiLvK6XmVcXeKAj3OesR8PtsF95rOnrCSgMqTyYDH3G/GrJVDeP0mI5DJ8QPK6XWuKjdBMhxXv5XKfVZNSUD4xfysXMQOxLQE3DaAzdTNmHme2BOkFPODfj9GxFpg/4n9zLKEtp9IvIBcL9S6tuKAlHim3j1Mfo7+S168lEaOgG8Dj1m9GL0521EEI1AHkAnxLOBCcB6dKKUC/wW/X18mSCP+EUPd/iAskTydfSQju3o3uA/oMf2dozyGk1QD53Yz0Env6vQk60y0JPjbkLHfBiwDri3Er2XgTOAycAU9GS845z3iW9qe9Cm3er+RgQTcJx2rxF+EP5FAcdvCaFRL0BnLwHlOND/ORc7x56oxOYmQfbNJ8zEmYB2uQF2nhitToS+qta1RBi3LykrezMghA0LA+y9LMy1KmAjTumcCm3aomfYKuDtanzONlD5BJzeAfbMDXL8R8rK0xzl0uc/L+A9zwnRphn6nwAFfO72dVfT/gcd/e+BpBCf89wqat8coHFPNe08zvnOK3RiE0lZn4KA96+4rSXEpBp0AuZrdz165n0onYPAkGpemxAw6SpEG19JqVLglCDHe1awa3QInZcD2nQMcvypgON/C3K8HvoJROB7nRikXUQTZwK+P0E/3+F0gFSgRSV+9cVyH0Em2lX4nCvghurEsq5udsykpVZxxt2cLyLvUTYI/zP0zM2K/J/z8z2l1LNBjqOUOoz+b/Mg+r/2wLF4GUB95/ew49GUUjsiu4Jaw+i1iEhndA8v6EeuM4LoHkD3gPgeDVU2vvAWpdRPQXTWoP/4AGRHa2tlOONK24nI3QHvsw+4I0jzJs7PPUqpgy6ZEPjoNtREnKsoe1JU3Ue9riG69M3tzsvfKz1Rzk18/lBUozfWGf4yDv2dB90bGHbYRRgOoe81Z6nQk2oyAn5/Gp20jEVPyDkK/fj0bkcrCXhFRH5VRXtQmsomXd2PTo4F3UMajq/RyWcwHg34PbCn19dLneu8/KZCW5+th9Hjjqvqf9dQSu1XSm0Nc1yhn7AcRsfwokok5yulXnDRxDqDTSYtNU25SSXom9+nwKXonraXgEtVhbErIpKO/s8a4M1wb6CU2oUuTAz60Y+PHc57AAwXES8P8zB9LYEzYceHaqSUWg/4Vmnp7vyxCcYe4N0w77fU+ZnhPEarDidU+IwdQD/euh89HnIJcLFSammQc33JyP5q2hDIfPSEGoDBomcvV8Q3du0Awf+RqnGcR78vov9peVUp9YnL+u3QwxwAFiilNlRD7j70RB7Qn8eKw1tCcT76sWVH9NjWe9D3pPvR9SpD1e9MDfg9GRijlLpZKfWDUqpY6clYD6JLUYFOKMMNcYgKEUkQPZntVBHp4CT97dDjKqHyR8yTnUTqCJRS36P/2QL9CD2QTpSN6w2n8TPBhwfUKiJSX0RaOf9c+vzWEn0/hcr95ubEszqFl/+YWuoeP6ALPgcbPP4rysalTBCRCRFq+mclKqUOisjr6N60QUAXEXkT/cf+cycJ9QQ1cC2+sZil6OQrHF8Cl6B7ZNpSNuYzkDVKqdIwGjsDfk8DdkdmZtQcAF5SSn0Z4ngherJRaojjUaOUUiIyEbgL3fOZQ1kPqS+p6uS8nKmU2u3We1dERI7jyMlUPvY7/xz4uAk9NnAnYGJi1IiA36vcGysi16F7AUE/mh4aKsmpiJM4BfKJiDyHToRGAL8SkfOC3JMCe912oscgBtOfKCJ/Qo9fvkREGiqnzJSINCd00fdiVWFsqtP7OhSdoJ5D2USxYDQNcwwqH0+6Cz3ON63C/sDJfssq0VgK9K+kjXGcf96uR//D9ivCF9CvzG8r3LKrrmF7Ji01zfPonoAz0F/sHPTEjkPOvgUicmqQ8yJZaSMYKRVe30JZHbvW6Ecc7wI7RGS5iNwtIs3wBiavxfcYb28Ejwu3BTmvIkWVaAQmmtUdzL6Fss/YGege7VvRvYPJwL9F5K8hzvX1UDQM08taFQIf4VZ81B22tqTLjEEn+8E2/z9oInI88JDz8nalVL6bRji9nr6VfvYDQVciikBnCPBv5+Um4CKl1Pbq2Ob8I+ZLdM8k+HCIwNJBH1cyJOID52cCuhapjxsJHYu5gQIikoyeLDMR/XkOl0gSwfFIv48Vv4uB/4hU9plw9TNTFUQkAz2r/Dl0Al7ZSkyV+c0zHQ41je2ZtNQ021X5wsPLgfdE5F10iY0M4DUR6eKMvfEReFP7A+XryYWj3ONKpZdovEJEstCzj3uiew0S0Y84OgJ/EZGhSqlZEV9VLVBD1xJRD0+McUgdWdx6gYi8AixCj2t7SETmK6Uq9rouR89ITUD/sxOqBzMqlFI/isgi9AzaHBHJUErtDOhtAp2Uzw0pUrPcjO6Z2g4UOUlbRc4J/F1EfP90fKqOXA6xIr3QE2YApod4GhEWEbkMnaQnOHZepJT6X/izIkMptVpEfkSX1xrEkQnlxoDfjxgHHKZtVf+5uxM9FAj0GOmx6Lq824BffL3+IrIQPQNbgonEIU9TlsDPQE8u+gb9eTng68EWkY3omrOV+a065abqNDaZtMQESqnZIvJv9H/rZ6MHeQeurVsQ8PsvQZKFaN9vGc5jGhFJRd+Ah6LLYqQDU0XkZKVUYK+b77/1ynr0XXtEGglVvJbK8D12bigiyZX0TgYWON4ZslUto5TaJSIj0AliIvAER074WYBOHkCXVXIlmXR4BZ1MJqHXCH8eXWPTVzh9coV/oFxHKZVL2QSKcPh6ZZujqyNUxu+cDeBydImqcFTrEbeIXIweW1of3Vt0sVLqh2h1KiEfnUyeEOTYdwG/V9aTHnjcH1+l1GjKr/oVFOcfjlHOy0+BC8MMGQn1ZMAtAnvmKkuMKzuu0MmbkfupM85+sPNyslJqWJjmoYZ+WCLEPua2xBL3UdaTeK9TANjHCsp6yc53802dGX8fKKWGo8e1gX483rdCU9+jrcpuPKe5aV80RHEtleFL1hMoG88XCl8P1UHAtRqEJlBKLUbXfgQ9Yaji6hdT0PUvQReADjUBoyq8QdlYu6sr/IQYmsVtEhFJQyecoHvtoprYIyLd0b1MR6G/k5copb4Je1LV8PWcBus1XRjw+8mV6AQeryzJDkYGZf+wvRkqkXQ+q8GGCLlJYBKdFbKVprL7hun76SmUVbyYGqqRiJyG7oW3VAObTFpiBmesk6/swvEE9F44Y7YWOS+vdCYSmCCwYHbFwdjrnJ9tnf96j8AZZzewmjb4Eo7qjtkLdy2V8WHA79eEaiR6mTTfzO9PXSynY5IHKPvH5O7AA0qpAso+g8dSthZ1pTizRC8MddyZWOMr3H6uiHSk7LPytap+YWvXUEr9SSkl4TZgZMApIwOOzahE/krKxjJHtdKPiHRBjx1MQY/7y3H+QXAVpzSWr0fyiLg4M8991QAuEJGgCZHolWsGOC+LqHzSSjACnyCG66UbhfmnjUvRlRkAhjq9pkcgIscAfSrR8t1PO4dqIHrhhIorfEVKpH77XZhjlgixyaQl1niMsmTq7xVK3vhmTKYAb4leRzkoIlJPRIaJSKuAfZki0iPUOQ69A35fX+GYr55jEvCnIO8p6IHeLSp5j8rw1UUL2ePhwrWExRlL6PsjPUKCrMHtJM4TKLtpR5x41SZOL5ZvCbxuQRLAOynrmc0VkQmh/nkAf5mW4ehE4cxK3j6w93ESZT0icdEr6VCl3lgnsfgAPcP4ILqQ/qfRvLGIdHfKwYRrc1wFu0LVv3zY+ZkCjA2RWN1NWXmdl6tYpzOfsuoGVwWbGOYkv0FnlLuJM9zF548zKatBGmhLAvofsiPWNK+A7356jujlOivqNCJgUlgVWEvZP40jgsVHRPqhxwdbqokdM2mJKZRS20TkJXRZkpPQY/9ecY7NEZEn0LOWuwCrReQF9E0pH31TPwk9Lu0KdM/SGZTVXmuNLv3xPfox2RLnWCm61tgAysaT/QRUnLQyG52UnQSMFr0U3DR0j8OpwO/Rj+A/B86rhhsWOe9xmYjc4Oj5Euy9Tg9uda8lEq5DJ5RHATNF5F/Oe+1FL0H2F7R/QT9+eyeYSIzyIGVlS+5GL1MHgFKqyPkj8x66dl8u0E9EJqNLL21Fj307lrLPWtsI33cuetLEsZT1uBwisnGJiF62r+IwD19C2kBEcisc+yyCYtc1htOT7UscFqkQaz8HOe9kdG+5rwfwPmBrJYnhriATgbKAJ52JKu+hh8/4xmO3Qo9hHYkeawy6ZmVeMHGl1Fsi8g66QPhVwLFOWaH16PiOoGzM3v+IYHxkiPcpdT57N6ETuM9E5En0ak0N0fU1b0Q/jt9C5J/FqjIa3bt8LPAPp4f9VcqWU/wj+nuxGH2fhuAT+V5A210feEdEHkAPH6jnnHcresnG/1CFtbCVUjtEL4aRgy5dNldEnkfHojn6qUAuuoe0EVWfHGUBu5yi3cxvRLicYkD749E9DwpdezKhwvG/BxwPtx0kYAkyjlxOLNS2kSDLiDkaXdFjfUKd+zDVX07xLMqWF6y45bl1LRHG7kL0pJpw7zGNEEvXVXatAe3C+ixCWzcQZtm1IO3fD3jP84Mcb4ieBFYSgZ8Po/+gtozgfR+rcO7MKK4xNwJbArdcg9/r3GjfB10U3HfO9Qav2/9dqaDzpyjOnwCkVGJXCvoftXA63xNkecMofd0QvWpNqPfYgU7SQ37fKH/P6Bnhd+kIHzrHO6KTx3C+uybg9TEhdG4Jo7EfPbY2jzDf64D2o4McOx6dPIZ6j/8Bp4e7Xly4N8XDZh9zW2IOpZfc8z1makvZf/e+4w+jB1c/hP7vdwf6D/4+9ASQaehxMMep8r0yn6KXB3sI3RP1I7qXrQTds/kx+r/hdkqpoMVplVJfoP9LzkP3BB4Cfkb/QemjlPp71a/c/x7L0Unr6+hkMNg4xGpfS4S2fIz29f3ox7h70CvvbEZPZMlRSg1SVV+6rjYJfCx4d8WDSqk9Sqlr0b2Td6P/UP+EnqBzAO2DD9D/3JyolLpaKbUlgvet+Gi3yssIehDfI+7aWulnPHq2/lh0j/96dNJSjP7eLEIn+2cqpUYqpcLWY1RKFSml+qJ76mahewYPoe9J89GPUDuqCHtgw7zPHvTTjrvRYzgPoO93q4HHnfdYGFrBXZx7yunoigg/ou9RBejJVL9VSgX27kLZOMuKOs+ilzB8j7JVvTai/4nLUkq9XU07f0Lfrx9D/2046NiyAt27fZZSalV13sOiESfzjllEpBf6C9kV/YhjB/rL9LRS6r0KbbuhZ7Ceiy4++iO6rtSzKkTJDRHpi35c51th5TvgX0qpkGN5nPIiN6G/TIfR/zE+rmK8LqHFYrFYLDWBiIxHr9azWSnVqrL2Fm8T0z2TIvIoesxKJ/SA+SfQ49aaUbZOs69tf/R4i2z0qiDPoSdKPIUu9xFM/2b0iiEd0IPhX0SPN8sTkcdDnPM4uleqhdN+Enrc2LuOnsVisVgscYuIHE3ZmGQ3a7VaYpSY7ZkUvd7qOPQjoetVhVlwIlJfKXXI+T0dPXOrIXCeUmqpsz8Z/bivK3CVUmpKwPknosey7Ed3p29w9jdGT2Y4GejmPNb0ndMN/Wjkv0Bn5ax/7GgtQ5cfOM2nZbFYLBZLXcOZELVOBUkgnHJIL1FW2q2/8tbkPEsViMmeSaf0wRj02IkjEkkAXyLpMAjdWznFl0g6bQ5QVrj59xUkrkHPUn0uMPlzEkTfmrQV60/5Xo/xJZLOORvQY3COonztNYvFYrFY6hp/R1fTuFdELhGRs0Skq4j8Dj2O3ZdIfoJ++mep48RqaaCL0cnhP4FSEclBP4o+ACwO7C108NWJ+yCI1kJ06ZZuInKUKiuqHO6c9yu0ieR93kcPjr4QuDfIcYvFYrFY6gqnEr7c0ZfAb4L1XlrqHrGaTPoq4h9AT24pV0vMqRE2SOlVUaBsCakjlnJTSpWIyHp0XbxM9Oy3ys7ZKiL7gVYikqJ03blU9PJa+5RSWyueg57sA2FqfInI9cD1zsuslJSUUE2rRGlpKQkJ7nY2m9A0pWvK1gMHDpCcXFn93eiwfjWjayJWYP1qYxXfsYLy8UpOTubw4cMcPnw4sIQOIkJCQgL16tWjXr1654pIfmpq6MVnrF+99d0qKioqUEoFr8dZ27WJgm3A8+iaTiXAN+givQ3QE13mUKGOFjohVATUFKyg97lzvGvAvmJnX2KIczY7x1s4r1s6rzeFaF/fOX4wkmtMSUlRbvP22297QtOUrilbs7KyXNe0fjWjayJWSlm/2li5r2lK194HveVXL323gKUqRE4TkxNwnFVNrkfXhCo3oUVEUtCFrFvhTJARkTXoWninqCCrPYjI5+iK/P4JNSJSjE4A6yulSoKcsxmdQLZUuqeyJTrBDFrmQETqoxPUYqVUpWsqp6amqv3791fWzBIDdOrUiaVLl1be0FLr2Fh5Bxsrb2Hj5R1MxUpElimlOgU7FpMTcChbh/RrVWFmtNJFZOc4L31LNfkKojYMoefbvztgX6Tn7KnwM5r3qFHy8vI8oWlK15StJrB+tfHykl9trNzXNKUb77EypeslW2uDWE0mf3B+7g5x3DeT+ugK7Y8Yrygiieh1jkvQa3BWfI9g57RAl/nZ5CSvKKX2o3smGzjHK3KK8/OIMZg1RXHxEZPeY1LTlK4pW01g/Wrj5SW/2ljZWJnA+tVb8QpHrCaT89DjD08XkWA2+ibkrHd+fuz8vCRI22z0+qmLVNlM7srOubRCm+qcY7FYLBaLxVJnickxkwAiMhO4DPizUuqpgP290aV59qDXw93jFC3/L3ot0EiLlp+EntldK0XLTYyZjPcZbKZsNTH+xPrVjK6psULx7lcbq/iOFdj7oJdstWMmy3MT8BPwpIh8JCKPicg09ILwh4FRSqk9AEqpvcB16LW154vIeGcpxuXoRHIaMDVQXCm1HvgrkAEsFZGxIvIUevb4ycATqkI9S6XUIuBJ5/g3IvKUiIwFljo6f4kkkTTF3LlzPaFpSteUrSawfrXx8pJfbaxsrExg/eqteIUjVutMopTaJCJZwD3oHspsYC+6mv7DSqnFFdrPEJEewJ3AQCAZvcTin4FnVJAuWKXUsyKyAfgLcDU6uV4F3KWUeiWEXbeJyLfoZPd6oBT4D/CYUmpWtS+8GmzcuNETmqZ0TdlqAutXGy8v+dXGysbKBNav3opXOGI2mQRQuij5Lc4WSfvPgV9H+R7vEuVyT0qpPCAvmnMsFovFUvPs2bOHgoKCak10OOuss1i9enXlDWNA15Stjz76qGds9ZJfTehGGqt69eqRlpZGRkYGRx1VaUXDsMR0MmmJjpycHE9omtI1ZasJrF9tvLzkV6/G6sCBA/z888+0atWKo48+GhGpkmZxcTFJSUlumWhU15StSinatWvnqqb1qxndSGKllOLQoUPs3buXjRs30rp162ollLE8ZtISJfn5+ZU3igFNU7qmbDWB9auNl5f86tVY5efn06xZM1JSUqqcSAKUlByxroUrmNA1ZasJrF9rL14iQlJSEk2bNqVx48bs3LmzWno2maxDLF68uPJGMaBpSteUrSawfrXx8pJfvRqrAwcO0KBBg2prmlqtzISul1ZWs36NjXilp6dTWFhYLQ2bTFosFoulTlJSUkJioh3NZbGEo379+hw+fLhaGjaZrENkZWV5QtOUrilbTWD9auPlJb96OVbVebztIyUlpdoaNaVrylYTWL/GRrzc+I7YZLIO0apVK09omtI1ZasJrF9tvLzk13iPlYmJF6Z0TdlqAutXb8UrHDaZrEPMnDnTE5qmdE3ZagLrVxsvL/k13mO1e/du1zVN6Zqy1QTWr96KVzhsMmmxWCwWSxUoLYVXXtE/LZZ4xo5MrmFEpB/QLzU1lXHjxgHQpUsXmjVrxuzZswFo3bo1vXv3Zvz48YDuBs/NzWXGjBls374dgIEDB7J27VpWrFgBQLdu3UhLS/NrZmZmkp2dTV5eHqDHZQwbNoxp06b5SwAMHjyYlStX8t133wHQo0cPEhMTmTdvHgBt27alWbNmfs309HSGDBnClClT2Lt3LwBDhw5lyZIlrFmzBoBevXpRUlLCggULAGjfvj0dOnRg6lS9mmVGRgaDBg1i//79ft3c3FwWLlzIunXrAOjTpw+FhYUsWrQIgI4dO9KmTRumT58OQPPmzRkwYAB5eXn+QsSjRo3i8OHDfs2cnBzy8/P9MzuzsrJo1aqVv9eiZcuW9O3bl/Hjx/vXRh01ahSzZs1iy5YtAPTv359NmzbRvXt3xo0b52qc9uzZw7hx41yLU+fOnZk8eTJ79uxhypQprsVp0qRJflvditPcuXPZuHEje/bsYfPmza7FadmyZXTv3p3ly5e7Fqc5c+YAuiZbcXGxa3ECKCoqAnAtTj69Y445ho8++si1OAE0bNiQ5cuXuxYn0I+jN2/e7GqcMjMzOeaYY/z3gV/96lcA7Ny50z/BoHHjxhw4cIBffvkFgLS0NAD/bNbk5GRSUlL8ca1Xrx7169cvp5GRkcG+fUX8/veJvP760Xz8cQnPP1/C/v1a4+ijjyY5OZldu3b5NTIyMtixYwelTubZpEkToKyUUXp6OqWlpezbty+oRmJiIo0bN6agoADfgm5NmzZl7969FBcX8/nnn3P55ZcTSGpqKm3btmXgwIFce+21JCcnM2PGDEaOHEkoTj75ZFasWOH/PKWmpgLw3nvv8fvf/57vvvuOvXv30qBBA04//XRycnL44x//yMGDB/1lbho3bszSpUt56qmnWLRoEdu3byc1NZXTTz+d3/zmNwwfPpyGDRty+PBh8vPzSUhIoEmTJsyaNYvnnnuOVatW8fPPP5Oens5xxx1H586d+fOf/8xJJ50UNk4ZGRlcddVVTJkyhdWrV3PKKadQVFTEgQMH/LGeOHEi119/PS+99BK/+c1vSE5OZsWKFXTqpJecvuOOO/jzn/9cLk779u3j7LPPpkGDBixfvrxcnD755BPGjRvHqlWr2LFjB40bNyYzM5OsrCxuuukmmjRpwtKlS/n1r3/Nrbfeyt///ncaNmxISUkJ+/fvZ/HixfTt25ekpCTWrFlDSkoK9evXp1GjRuTn5zN48GDmz5/P9u3bSUxM5NChQwA0atSI4uLicnFKTExkz549/r8x6enpFBQUAHpcZNOmTdm1a1e5OPm+C4WFhaxcufKI71Pg36ewKKXsVgtbSkqKsniDrKys2jbBEiE2Vt6hJmK1atUqI7qHDys1cqRSULaNHKn31xaffPKJAtRVV12lJk6cqF599VX1j3/8Q5122mkKUNddd51SSqkJEyYoQP3hD39QEydOPGKbMWNGOd3t27erc889VwHqnHPOUQ8++KB66aWX1BNPPKH69++v6tWrp6688spy5/zrX/9S9erVU02bNlV/+ctf1Pjx49Vjjz3m17n44ovVvn37jjgHUJmZmeqee+5RL774onrooYfU8OHDVdOmTdWbb74ZkR9GjBihAJWfnx/0uO/6A/XWr1+vAAWolJQUtWXLliPOO+GEE1T79u3L7bv99tsVoM4880w1ZswYNX78eHX//ferK6+8UqWlpaklS5YopZQqLCxUiYmJ6rzzzjtC96GHHlKJiYkKUB9++GG5Y4cOHVKpqanqjDPOiOjafXz33XdRtVcqsu8KsFSFyGlqPamK181EMvniiy96QtOUrilbTfzRs341o2sqQYl3v3o1Vm4lk9u3b/f/HiyRrGpCGahbXXzJ5L333ltu/549e1TLli2ViKht27YFTaZCUVpaqrKzsxWg7rjjjqBt1qxZo8aMGeN/PXfuXCUi6swzzwya0N15550KUMOHD/df/6FDh1SjRo1U69at1Z49e4445+DBg2rHjh2V2qtU9ZLJTp06KUBdf/31R5x3/PHHl0smf/75Z5WQkKA6d+6siouLj2hfWFioCgsL/a+7du2qkpKS1P79+8u169mzp7r00kvVscceq+68885yxxYtWqQAdcstt0R07T5qI5m0YybrEKUGBu6Y0DSla8pWE1i/2nh5ya/xHqsybRg1CiZMCH58wgR9PJbclZ6eTteuXVFK+Yc+RMqsWbNYuHAhgwcPZujQoUHbnHLKKdxxxx3+1//3f/8HwGuvvUbTpk2PaP/AAw9wzjnnMHHiRFatWgVAQUEBu3fvpnPnzqSnpx9xTlJSEhkZGVHZXhXOOeccLr/8cl5++WV++OGHsG3XrVtHaWkp2dnZ1K9f/4jjDRo0KFcw/4ILLvAPR/BRUlLC4sWL6dGjBz169OCTTz4ppzF//nz/ubGOTSbrEAkJ7ofThKYpXVO2msD61cbLS36N91hB5Ymkj1hLKJVSrF27FqBccldYWEhBQcERW+CKLNOmTQPg+uuvj+i91q9fz3/+8x+6detG+/btg7YREa699loA/3jZY445hgYNGrBw4cJKk7hI2blzZ9Dr8411DMXDDz+MUoq///3vYdtlZmYClBsXHA5fQuhLEAGWLFlCUVGRP5lcsmRJOf/Pnz8fEaFHjx6V6tc6obos7ea9x9wWM9hxeN7Bxso71OaYyWCPqGNlqyq+x9z33Xefys/PV9u3b1crVqxQo0aNUoA699xzlVJlj3lDbTfddJNf8+yzz1aA2rFjR0SPTt95552IHssuW7ZMAWrgwIH+fY8//rgCVL169VTnzp3VH/7wBzVp0iS1devWqPzge8xd2RbsMbfv2q+77joFqC+++MLfJtiYyZtvvlkBKikpSXXv3l399a9/VW+++abauXPnEXYVFRWppKQk1bVrV/++hx56SDVo0EAdOnRIrVq1SgFqzpw5Sqmy8ZIdO3aM6vqVso+5LdVk1qxZntA0pWvKVhNYv9p4ecmv8R4rL3HvvffSrFkzmjdvTseOHXn55Ze57LLLmDFjRrl299xzDx9++OER2y233OJv46syEOzRczB87Rs2bBi2nU9vx44d/n233XYb77zzDr1792bVqlU888wzDBs2jFatWnHttdf6Zy1HyvTp04Ne31//+tdKzx09ejQpKSncfvvt/n3Bhk8888wzvPrqq3Tr1o3Fixfz2GOPceWVV9KiRQv+9re/lVui8Oijj+acc85h6dKl/t7H+fPn06VLFxITE2nXrh3Nmzf391z6eim98IgbbGmgOkUkXe2xoGlK15StJrB+tfHykl/jPVZeYvjw4Vx99dWIiL80ULDxhmeccQYXXXRRWC1f0ucrx1MZvvZ79uwJ286XdAaOKQTo168f/fr14/Dhw6xatYp58+bx9NNP8/LLL5OYmMgLL7wAwLZt28qdF2xMZXZ2dtAxm5s2bar0Olq2bMmf/vQnHnroId5991369esXtJ2IMHz4cIYPH05xcTHffPMNc+fO5Z///CePPvoojRo1Kve4/IILLuDTTz/ls88+o1evXnz++ef88Y9/LGezb9ykL6ns2bNnpfbGArZn0mKxWCxxRbQPn7dvz+fwYQhTnrEcI0fC4cOR6VbcV10yMzO56KKL6NWrF+eee261Jq506NABgK+//jqq9v/5z3/CtvMdb9euXdDj9erV44wzzuBPf/oTS5YsoWHDhrzyyiv+nr4WLVqU26644oqI7IuGv/3tbzRp0oQ77rgjokldSUlJdOrUiTvuuINPP/0UEeGll14q1yZw3KSv57Fr167+4z169GDp0qXs27eP+fPnk5CQQHZ2trsXZgibTNYh+vfv7wlNU7qmbDWB9auNl5f8Gu+xatSoEQkJMH585QnlyJG6XSTzgBo1auSKfYEcffTRrmkNHDgQwF9IvjJOOukkzjrrLBYtWsTq1auDtlFK+ZOswYMHV6rZtGlTTj75ZA4ePOgvwF3x0fUTTzwRkX3RkJ6ezl133cXKlSt55ZVXoprYdeqpp9K4cWM2b95cbn/Xrl1JTk7mk08+Yf78+Rx99NHlHmP36NGDkpIS5s+fz+eff85ZZ51F48aNXbsmk9hksg4RSfd9LGia0jVlqwmsX228vOTXeI+Vb2WgyhLKaBLJQF03CRynV1369etHdnY2r7/+Oq+//nrQNmvXruXhhx/2v/b9PnTo0HJjIn2MHj2aL7/8kuHDh3PaaacBejUo3ypPFfnxxx9ZtWoVTZs2pVmzZgBcdNFF5basrKxqXWcobrzxRk488UTuvfde/yo6PrZt28by5cuDnvfpp5+yc+dOTj/99HL7jzrqKLp27cqyZcuYNWtWuV5J0D27TZo04bHHHmP//v2eecQNdsxknWLZsmWuf6lMaJrSNWWrCaxfbby85Nd4j1VRUZF/WUFfQgnlywRFm0hW1HWLSBPUTz/99IgEycfQoUMREUSEadOm0a9fPx588EE++ugjLrvsMo499lh2797NZ599xjvvvOPvwQS45JJLeOaZZ/jjH/9Iu3btGDlyJKeeeiq7du3irbfeYtGiRVx88cU8//zz/usvKiqiZ8+edOjQgUsuuYRTTjkFpRTff/89r776KgcOHGDs2LE1XqIqKSmJBx54gOHDhwPlSytt2rSJzp07c84559CrVy8yMzM5ePAgK1asYPLkydSvX5+HHnroCM0LLriATz75hEWLFnHfffeV+wyICN27d/dPlvLK5BuwyaTFYrFYLFFRMaGsSiJZ2zzzzDMhjw0ZMoTERJ0eNGvWjE8//ZR//OMfLFiwgCeeeMK/7nPHjh15+umnj1jr++abb+a8887jySef5LXXXuPnn38mNTXVP7v86quvpl69ev4Z2o0aNeLll19m7ty5vPPOO2zdupUDBw7QrFkzevTowS233FJridXQoUN54oknjuiFPO200xg7diwffvghU6ZM4eeff+bQoUO0aNGCAQMGcNttt/nXhg+k4mPtivTo0YMZM2ZQr149unfv7vr1GCNUzSC7ea/O5Ndff+0JTVO6pmw1UQ/P+tWMrqnahfHuV6/Gyq3lFCsugefj8GGl8vKqviZ3KN3qYEJTqarVLqwMU7Z6ya8mdGujzqTtmaxD+MaTxLqmKV1TtprA+tXGy0t+jfdY+XrpKpKQACNGuK9bHUxomsKUrV7yq5fiFQ4PdcpbKsO3NFWsa5rSNWWrCaxfbby85Nd4j1VldRNjSdeUrSawfvVWvMJhk0mLxWKxWCwWS5WxyWQdonXr1p7QNKVrylYTWL/aeHnJr/Eeq6SkJNc1TemastUE1q/eilc46sbDeg8hIv2AfqmpqYwbNw6ALl260KxZM//jmdatW9O7d29/odikpCRyc3OZMWMG27dvB3Qx2bVr17JixQoAunXrxqmnnurXzMzMJDs7m7y8PABSUlIYNmwY06ZNY+fOnYAuGLty5Uq+++47QM8iS0xMZN68eQC0bduW8847z6+Znp7OkCFDmDJlin85rKFDh7JkyRLWrFkDQK9evSgpKfHXDGvfvj0dOnRg6tSpAGRkZDBo0CAKCgr8urm5uSxcuJB169YB0KdPHwoLC1m0aBEAHTt2pE2bNkyfPh2A5s2bM2DAAPLy8vxlMEaNGgXg18zJySE/P5/FixcDkJWVRatWrZg5cyagl8vq27cv48ePp7S0lISEBEaNGsWsWbP8y7H179+fTZs20b17d8aNG+danNLS0ti4cSPjxo1zLU6dO3dm8uTJAEyZMsW1OE2aNImioiLGjRvnWpzmzp3Lxo0bAdi8ebNrcVq2bBndu3dn+fLlrsVpzpw5gC7GXFxc7Gqc0tLS/PFyK04AV199NR999JGrcbr00ktZvny5a3ECaNWqFZs3b3Y1TpmZmfTs2dN/H/DNpt25c6e//mLjxo05cOAAv/zyS7k4+JYMTE5OJiUlxR/XevXq0bhx43IaGRkZFBUV+UvrVNQ4+uijSU5OZteuXX6NjIwMduzY4V9NpUmTJogI+fn5gL6/lpaWsm/fvqAaiYmJNG7cmIKCApSzVE7Tpk3Zu3evP24NGzakfv36fs2UlBSSkpLYvXs3APXr16dRo0b+46DHmO7evZtDhw4BemZ1cXGx//OUmppKYmIiaWlp5Ofnk5SURHp6ur+AuIjQtGlTdu3aRUlJSVAfN2jQgISEBP/n/KijjqJBgwYUFxeTn59PQkICTZo0qXacMjIy/Br5+fmuxWnfvn1+W92KU0lJiX+N7v3797sWpz179pCWluafcR9pnAoLC1m5cuUR36fAv09hCTUzx27em839wgsveELTlK4pW03MOrV+NaNraoZwvPvVq7Fyazb39u3bXdGpCV1TtpqYzW39aka3NmZz28fcFovFYrFYLJYqY5PJOkS8jxPx0tgT61cbLy/5Nd5jJSKua5rSNWWrCaxfvRWvcIhynulbapbU1FTlGy9hiW06derE0qVLa9sMSwTYWHmHmojV6tWradeundH3iBdWrVp1xFrTltikKrGK5LsiIsuUUp2CHbM9k3UI33qesa5pSteUrSawfrXx8pJf4z1WvskVXtA1ZasJrF+9Fa9w2GSyDuGb8RjrmqZ0TdlqAutXGy8v+TXeY+Wb/eoFXVO2msD61VvxCodNJi0Wi8VisVgsVcYmk3WIgQMHekLTlK4pW01g/Wrj5SW/xnusGjdu7LqmKV1TtpogWlu3b99Ow4YNefHFF13VjQSvfAZmzpxJx44d+fHHH13VrQybTNYh1q5d6wlNU7qmbDWB9auNl5f8Gu+x8hW9jmXd+fPnIyI88sgjIduICH379vW/7tmzJyJCZmamv6B2IKNHj0ZEjpgotW7dOq6//npOO+00UlJSaNy4Me3atWPEiBF88skn/nYtWrTg+OOPD2rLaaedRv369f1F6gOZMmUKIsITTzxRbv9dd91Fs2bNGDlypH/fhg0bEBFEhDvvvBM40q8nnngiHTp0KLcvNzfXf16oiWBPPfWUv01FO7dt28Zf/vIXOnToQFpaGunp6ZxyyikMGTKEt956q1zbnj170qBBg6DvEWhrsHa+GARu6enpnH766dx1113+ou0++vfvT9u2bfnb3/4W9P1MYZPJOoRvVYhY1zSla8pWE1i/2nh5ya/xHivfKiyB7Nixg/Hjx/PAAw8wfvx4duzY4YpudfGtkBIN69ev5/nnn4+o7dKlSznjjDN444036N27N0899RT33nsvF154IYsWLfKvrAQ6Odq0adMRCf7WrVv54YcfSExMZP78+Ue8hy8hveCCC/z7Nm3axMsvv8wtt9xCYmLwxfv++c9/snXr1qj8mpyczIQJE4IemzBhAsnJyUB5v/7vf/+jY8eOjB07lnPPPZd//OMfPPzww/Tt25fvv/8+pF4wIrX1/vvvZ+LEiUycOJGHHnqIdu3aMWbMGHr16uVfrcfHsGHDePvtt/2rcdUEdjlFi8VisVgiRCnFmDFjGDNmTLlepVtuuYU777yTO++801O1A48++mhOOukkHnzwQa655hr/koOhuO+++ygqKmL58uV07NjxiOPbtm3z/37BBRcwZcoU5s+fT5s2bfz7fQnklVdeGTSZnD9/Po0aNeKss87y73vhhRcQEa666qqgdvlKTY0ePZoHH3ww7DUEcvnll/P666/z5JNPctRRR/n3L1myhG+//Zbf/va3vPbaa+XOefzxx9m+fTszZsygf//+R2gG+sAtLr30Ujp1KqvKc/PNN3PFFVfw9ttvs2LFCv/SoQAXXXQRDz74IP/+97959tlnXbclGLZnsg7RrVs3T2ia0jVlqwmsX228vOTXeI9V4KPHMWPGcPfddx/xKPXAgQPcfffdjBkzpkq6bhGYEEVCQkICDz/8MAUFBTz66KOVtv/xxx9p0qRJ0EQS4Nhjj/X/7utZDHz0DTpZPO200xg8eDCbN28uN75v69atrFmzhuzsbBISylKUN998k06dOtG8efOg73vOOedw+eWX8/LLL/vXg4+EkSNHsmvXriNKSk2YMIFmzZr5hwUE+tVnb69evYJqBvqgMqrzGWjZsiVwZKH+1NRUunfvzrRp06qsHS02maxDVPYfZaxomtI1ZasJrF9tvLzk13iPlS+p2bFjR6XJ4pgxYyJ+5B2YLLnFL7/8QkFBQdAtFJdddhnnn38+Tz31VKW9aieffDI7duw4YlxgME455RSOO+64I3of58+fT48ePTjvvPOOeNTt+z3wEffPP//MDz/8QJcuXcK+38MPP4xSinvvvbdS23z86le/4qyzzuLll1/27ztw4ACvv/46w4YNo379+kD5lWpOPvlkAF588UWqu/BLpJ+BPXv2+OP43//+l5dffpkJEyZw/vnnBy1Q3rVrV7Zt28b3339fLfsixSaTdYg5c+Z4QtOUrilbTWD9auPlJb/WxVgFm9gQarvuuusAePvttyudNHPgwAGaNm1a7vzRo0cf0a5fv34kJyeHbVMVHnjgAZo1axZ0C8cjjzzC/v37K7Xjrrvuon79+gwcOJC2bdtyzTXX8Pzzz7N69eqg7S+44AK2bNnCmjVrgLKex549e6KU4uyzzy7Xc+lLJnv27Onft2rVKqAsiQvFqaeeyjXXXMPMmTP58ssvw7YN5JprruGjjz5i06ZNALz11lvs3r2ba665xt8mMO633XYb6enp/PnPf+aEE05g6NCh/POf/2TZsmURv6ePvXv3RtTuoosu8sexTZs2XHvttVx88cW8//77QYdV+HxVU+MmbTJpsVgsFksEbN26tbZNqJThw4fz4YcfBt3C0a1bNwYMGMBLL73kT/yC0bVrV5YtW8aIESPYs2cPEyZM4MYbb+T0008nOzubdevWlWvv62H0JYm+nz169PD/rNgzmZGRwZlnnunfl5+fD0BGRkal1z969GhSUlK4/fbbK23rY+jQodSvX59XXnkF0I+4O3fufMQMcB+ZmZmsWLGCm266CYDXXnuNW2+9lU6dOnHmmWdWKamsjLFjx/rjOG3aNG699Vbef/99Bg0aFHQmfpMmTYCaW3DAJpN1iMzMTE9omtI1ZasJrF9tvLzk13iPle9RZIsWLVzXdpu2bdty0UUXBd0qw/eY+O9//3vYdmeccQZ5eXn8/PPPbNiwgVdeeYXu3bvz6aef0r9//3LJTcVxk/Pnz+eUU06hRYsWHHXUUfTo0cM/uzvUeElfz1skj5RbtmzJ73//ez799FPefffdStuDTlIvu+wy8vLy+N///sfHH39crvwQcMQM8hNPPJHnnnuOjRs3smXLFt544w369evHt99+S9++fY8o2ROKSMe4dunSxR/HgQMH8uSTT3L//fczZ86cco/offh8VVOTwWwyWYfIzs72hKYpXVO2msD61cbLS36ti7EaPXo0SqmINt8f68svv9xfKiYUycnJ7Nixo9z5wR4dv/vuuxw+fDhsm6oQ7QScQE477TRGjhzJW2+9xVdffRXROSeccAJXX301CxYs4LzzzmPlypUsXrzYf/ykk07ihBNOYMGCBUDZeEnQk0/OP/98EhISmD9/ftDxkoD/EX2kCdpdd91FkyZNuOOOO44omxOKa665hrVr13LdddeRlJR0xKzxcH5t0aIFV155Je+88w6//e1v2bZtG++9915E71udCTh9+vQB4OOPPz7imM9XlQ1vcAubTNYh8vLyPKFpSteUrSawfrXx8pJf4z1Wvgk1TZo08RfGDsWdd94Z0ePYQF032b9/f7XOv++++0hJSYm66LWIcM455wCwefPmcscuuOACtm7dyieffMKaNWv8yeSOHTto2LAhZ511Fp988knIZLJ9+/YAEa/qcujQIe666y5Wrlzpf3RdGb1796ZVq1Z8+OGHXHHFFTRq1Kjc8Uj9eu655wJH+iAU1fkM+GpfFhYWHnHMV9sz1KN6t7F1JmsYEekH9EtNTWXcuHGA7r5u1qwZs2fPBqB169b07t3bX3E/KSmJ3NxcZsyY4R//MHDgQNauXesv0NutWzcOHjzo18zMzCQ7O9t/Y01JSWHYsGFMmzbN/x/L4MGDWblypX+Abo8ePUhMTGTevHmAflxy+PBhv2Z6ejpDhgxhypQp/kHDQ4cOZcmSJf4xNr169aKkpMT/X2j79u3p0KEDU6dOBfTjhEGDBrFz506/bm5uLgsXLvSPtenTpw+FhYUsWrQIgI4dO9KmTRt/MdzmzZszYMAA8vLy/I9TRo0axd69e/2aOTk55Ofn+/9DzsrKolWrVsycORPQj0L69u3L+PHjKS0tJSEhgVGjRjFr1ix/WYn+/fuzadMmunfvzrhx41yLU1paGgUFBYwbN861OHXu3JnJkydTUFDAlClTXIvTpEmT/La6Fae5c+eyceNGCgoK2Lx5s2txWrZsGd27d2f58uWuxck3mWPv3r0UFxe7Fico6zlwK05FRUUAlJaW8tFHH7kWJ4Di4mKWL1/uWpwAWrVqxebNm12NU2ZmJqWlpf77gK/23s6dOzl8+DCgl687cOCAv1i0b/a37w9ycnIyKSkp/vjUq1evnMb1119PaWkpDz/8cLlJGcnJyfzpT3/i+uuvZ9++fSQnJ7Nr1y6/RkZGBjt27PD3lDVp0oTDhw/7xwOmp6dTWlrKvn37AF3/MVAjMTGRxo0bU1BQ4H+E2bRpU/9nc/fu3YB+vOnTTElJISkpyX/Mh++4LxnZvXu3//dmzZpx44038vjjj/s/l4cOHSItLY38/Hw+//xzcnJy/JoiQtOmTdmyZQvvv/8+oD/r+/bt8/v4vPPOIy8vz5+In3322ZSWllJSUkJ+fj5dunRhxowZpKam0qRJE4455hhKSkrKxen000/niy++8Nvui5MvGfPFYufOnZSUlHDllVfy9NNPc88991BcXMzRRx/tb1NYWOj/3WcDwD/+8Q9+/PFHLrzwQv8+X7x8sUpPT2f+/Pm0a9eOo48+ulycSktL/bPcW7Vq5deo6PeGDRtSUlLC/v37/T+TkpI4dOgQSil2795No0aNyM/PL5fEBsapUaNGvPHGGwC0a9eOoqIiEhMT2bNnD2lpaXz22Wccc8wxZGRkkJ+f74/Trl27KCkpAcp/FwoLC1m5cuUR36fAv09hibSb327ubikpKcptJk6c6AlNU7qmbM3KynJd0/rVjK6JWCll/erVWK1atcoVzYKCgqD7XnzxRXX//ferF198MWibquhWlU8++UQBavTo0SHbAConJ8f/ukePHio1NfWIdrt371ZNmjRRgALUkiVL1HfffaeUUqp9+/bq2GOPVddff7169tln1UsvvaRGjx6t2rZtqwB19dVXH6G3ceNGv9ZJJ53k3++7/hkzZviPDxw4MKjto0ePVvXq1VNbtmwpt3/9+vUKUDfddNMRuhMnTvTrtm/fvtx5I0aMUIDKz88P6S+llHrzzTcVoJ599ln/vpycHNWoUSM1fPhw9dRTT6mXX35ZPfTQQyorK0sB6oILLlCHDx/2t+/Ro4dKSkpSDzzwwBHb3//+d79vg8Xj3nvvVYC6//771cSJE9XEiRPV2LFj1VVXXaVERLVq1Ur9/PPP5c5ZvHixSklJUTfffHPYawskku8KsFSFyGlqPamK181EMmkxg6k/ehb3sbHyDjURK7eSSS/gSyYfe+yxkG0iTSaVUurJJ58MmkzOmTNH3XjjjerMM89UTZo0UfXq1VMZGRmqZ8+e6qWXXiqXRAVy8sknK0Dl5uYecWzHjh1KRI5I2gLZvHmzSkxMVI8//ni5/cGSSR+lpaXqrLPOciWZnDBhgn/fF198of785z+rTp06qebNm6vExETVsGFDde6556onnnhCHThwoJxGjx49/L4Mtr3++uv+dqGSycAtMTFRnXDCCep3v/vdEcm1UkqNGTNGAerbb78Ne22B2GTSo5uJZPLNN9/0hKYpXVO2mvijZ/1qRtdUghLvfvVqrNxKJnfs2OGKTk3omrLVl0y6SbS23nDDDeqkk05SxcXFrupGgpc+A+3atVOXX355VOdUN5m0E3DqEJHOdKttTVO6pmw1gfWrjZeX/BrvsfKNt/SCrilbTRCtrffffz87duxgwoQJrupGglc+AzNmzODHH3/kkUcecVW3MuwEHIvFYrFYLDFP8+bN2bNnT22bEdMMGDCAFStWcMopp9To+4ruubTUNKmpqaq6JRwqsmfPHho2bFhjmqWlMHEiDB8O0S4xW9O2VodOnTqxdOlSVzVN2eolv5rQNRErsH71aqxWr15Nu3btqq1ZUlJyRNFqNzCha8rWVatWBV0DujpYv5rRrUqsIvmuiMgypVSnYMfsY+46xMqVK2tMs7QURo2C3Fz9M8K6sJXqVgcTmqYwZauX/Brv8fKSX+M9VpWtxx1LuqZsNYH1q7fiFQ6bTNYhTCzoHkzTl0j6hq1MmBB9QllTtsYqpmz1kl/jPV5e8mu8x8pX69ALuqZsNYH1q7fiFQ6bTFqiomIi6aMqCaXFYrFYLBbvY5PJOoRviSpTmqESSR/RJJSmbY11TNnqJb/Ge7y85Fcvx8qNeQG+VXLcxoSuKVtNYP0aG/Fy4ztik8k6hInBwT7NyhJJH5EmlCZt9QKmbPWSX+M9Xl7yq1djlZiY6F86zmKxBOfQoUP+ZUOrik0m6xC+NYDd1ow0kfQRSUJpylavYMpWL/k13uPlJb96NVbJycn+ta6rg2/dbrcxoWvKVhNYv8ZGvPbu3VvtHlKbTFoqZeLEyBNJHxMm6PMsFoultmjWrBn5+fkUFRW58ijPYqkrKKUoLi6moKCAXbt2kZGRUS097zy7sFRK27ZtjWhmZ8OCBdEllCNH6vqT4XTdxoSmKUzZ6iW/xnu8vORXr8YqOTmZY445hm3btnHw4MEqax44cICCggI3zDOua8rWbdu2ISKualq/mtGNNFb16tUjLS2N1q1bc9RRR1XrPW3R8lrCRNHy/fv3k5qaakQzmkfdQ4bA5MnhC5mbtNVtTBRXNmWrl/xqQtdUIex496uNVXzHCux90Eu2mvpu2aLlccLkyZONaSYkwPjxusexMj79FJYvj0zXTUxomsKUrV7ya7zHy0t+tbGysTKB9au34hUOm0xaIibShHLzZjj/fJg6tWbsslgsFovFUnvYx9w1jIj0A/qlpqZe9+STTwLQpUsXmjVrxuzZswFo3bo1vXv3Zvz48QAkJSWRm5vLjBkz2L59OwADBw5k7dq1rFixAoBu3bqxePFifxmMzMxMsrOzycvLAyAlJYVhw4Yxbdo0du7cCcDgwYNZuXKlf8WIHj16kJiY6J8N2bZtWzZt2kRRUREA6enpDBkyhNdem8LYsb9i0aJT/dfVrdsPnH32f3nllT4UFpaVGBg+/CeefjqdN9/UmWVGRgaDBg3iscce86+fm5uby8KFC1m3bh0Affr0obCwkEWLFgHQsWNH2rRpw/Tp0wFo3rw5AwYMIC8vj+LiYgBGjRrFc889R3JyMgA5OTnk5+ezePFiALKysmjVqhUzZ84EoGXLlvTt25fx48dTWlpKQkICo0aNYtasWWzZsgWA/v37s2nTJiZNmkS7du1ci1NaWhqvv/46GRkZrsWpc+fOTJ48mZ07d3LiiScyZMgQpkyZwt69ewEYOnQoS5YsYc2aNQD06tWLkpISFixYAED79u3p0KEDU6eWj9OkSZPYtGkTGRkZrsVp7ty5bNy4kZ07dzJ8+HDX4rRs2TJWr17NiBEjXIvTnDlzADh48CA33HCDa3ECPYvztttucy1Ovu9pgwYNaN68uWtxAqhfvz6/+tWvXIsTwHvvvcfYsWNdjVNmZibbt2/3z+B2I07p6en4cDNOubm5vPDCC/6xam7EKScnh1mzZvnHy7kRJ9997/HHH6ddu3auxSk7O5snn3ySjIwM1+Lku+9t2LCBjIwM1+K0cOFCli5dSkZGhmtx8t33du7cycUXX+xanGbPns3q1avp06ePa3Hy3fduuOGGkI+5bTJZS5gYM1mTBI6hHDlS91gmJMAPP0D//vqnj379YNIkCLgnewpT408s7mNj5R1srLyFjZd3sGMmLdViypQpNabpe+Sdl1eWSAKceip8+SVccklZ23ffha5dYe3a2rE1FjFlq5f8Gu/x8pJfbaxsrExg/eqteIXDJpN1CN8jmJrSTEiAESOOnLXdqBHMmgV//WvZvlWroEsX+Oij2rE11jBlq5f8Gu/x8pJfbaxsrExg/eqteIXDJpMWI9SrB48+qguX+8pX7dqleyyfeQbs6AqLxWKxWOoGdsxkLeG1OpPVYfFiuPxycMYNA3D11YcYN64+1ayTWg5bXy12PwM1pWtrF3rHVhsrb9lq74PesdWOmbRUiyVLlsSkZpcusGSJ/unj1Vfrc+GFsG1bteX9mLh+U5iyNVY/AzWpa4J496uNlY2VCaxfvRWvcNhksg7hK38Qi5otW+olGa++umzfokXQuTM4lQ2qjYnrN4UpW2P5M1BTuiaId7/aWNlYmcD61VvxCodNJi01RnKynv39xBMgUgrApk26wHkdmdBmsVgsFkvcYZPJOkSvXr1iXlME/vxneOmlbTg1yzlwAK66Cu64Q9evrComrt8Upmz1wmfAtK4J4t2vNlY2ViawfvVWvMJhk8k6hG/1m1jXBOjWrZDFi3VdSh8PP6wLnle1UoIpW01gylYvfQbiPV5e8quNlY2VCaxfvRWvcNhksg7hWyIq1jV9um3bwldfwaWXlu2fNQvOPRd+/LFqml7BpF+9oGlS1wTx7lcbKxsrE1i/eite4YjZZFJENoiICrEFnQMsIt1E5D0R2Skiv4jINyLyJxGpF6y9c05fEZkvIntEZJ+IfCUiIyqxbYSILHba73HO71vda45HGjbUK+TcfnvZvtWr9czvDz+sPbssFovFYrFERmJtG1AJe4B/Btm/r+IOEekPTAcOAFOBnUA/4CngPODKIOfcDDwL7AAmAcXAICBPRM5QSv0lyDmPA7cBm4AXgSRgCPCuiNyilHou6qt0ifbt23tCs6JuvXrwyCNwxhl6ve+DB2H3bl3g/Ikn4I9/1GMta8tWE9SEX2NZ06SuCeLdrzZWNlYmsH71VrzCopSKyQ3YAGyIsG06sB04CHQK2J8MLAIUMKTCOSeiE88dwIkB+xsDa51zulY4p5uzfy3QuILWDkfvxEhsTklJUW6ze/duT2iG0128WKmWLZXSa+ToLTdXqQMHqq5ZXbKyslzXrGm/xpqmKV0TsVLK+tXGKr5jpZS9D3rJVlPfLWCpCpHTxOxj7igZBDQDpiil/GXflVIHgLucl7+vcM41wFHAc0qpDQHn7AIecl7+rsI5vtdjnHa+czYAYx29kdW5kOowdepUT2iG0+3cGZYuhXPOKduXlwcXXFB5gXNTtpqgpv0aa5omdU0Q7361sbKxMoH1q7fiFY5YTyaPEpFhInKHiPxRRC4IMf7xQufnB0GOLQSKgG4iErh4X7hz3q/QpjrnWKKkRQuYPx9GBIxc/eIL6NRJJ5oWi8VisVhih1hPJo8FJgJj0GMnPwZ+FJEeFdr5CswcUUpeKVUCrEePD82M8JytwH6glYikAIhIKnAcsM85XhHf/OO2lV6VITIyMjyhGYlucjJMmABPPgkJzqd082bo3h1ee61qmrFEbfk1VjRN6pog3v1qY2VjZQLrV2/FKxyiH4PHHiJyL/Ap8B1QiE4EbwauR49N7KqUWuG0XQOcApyilFobROtz9HjHbkqpL5x9xUB9oL6TcFY8ZzPQEmiplNoqIi2BzcBmpVSrIO3royfwFCuljqp43GlzvWM/IpJ19tlnR+GR+GXPnnNZv/4hDh9O9+875pg8jjvuX/6VdEyyevVq2rVrZ/x9LNXHxso72Fh5Cxsv72AqVsuWLVumlOoU9GCowZSxugGPoyfBvB2wb42zr02Icz6nwoQadOKngMQQ52x2jrdwXrd0Xm8K0b6+c/xgJNdhYgLOxIkTPaFZFd0fflDq1FPLT8zJyVEqcOyyKVtNDGaOFb/WlqYpXVMDz+PdrzZW8R0rpex90Eu22gk4kfFv52d2wL49zs+GIc7x7d9dhXP2VPgZzXvUKEVFRZ7QrIqur8D5r39dtm/27PIFzk3ZaoJY8WttaZrUNUG8+9XGysbKBNav3opXOLyYTOY7P1MD9v3g/DxivKKIJAInASXAugjPaeHob1JKFQEopfajeysbOMcrcorz84gxmBZ3aNgQ3nkH/va3sn3ff68LnM+dW3t2WSwWi8US14TqsozVDeiDfpy8KmDfNc6+V4K0v9A5tqDC/vud/fcFOSeoHvCqs39kkHNC6gXbTDzmPnjwoCc03dCdPFmp5OSyR94JCUo9+ughVVrqkoEBmHhkEKt+rSlNU7qmHu/Eu19trOI7VkrZ+6CXbLWPuR1EpJ0ze7ri/hMB3wozkwIOTQMKgCEi0imgfTLwoPPy+QpyE9BFzm92dH3nNAbucF7+u8I5vtd3Ou0C7brJ0ZsQ/urMsXDhQk9ouqH729/Cp5/Cccfp16WlcPvtiVxzjV5BJ9aJVb/WlKZJXRPEu19trGysTGD96q14hSMmk0lgMLBNRGaLyL9E5BERmQasBtoA76En4gCglNoLXAfUA+aLyHgReRRYDnRFJ5vlKoMqpdYDfwUygKUiMlZEngK+AU4GnlDOzO+AcxYBTzrHvxGRp0RkLLDU0fmLCiiAXtOsW7eu8kYxoOmWbqdOsGSJHjfpIy8PevaErcGKN8UQsezXmtA0qWuCePerjZWNlQmsX70Vr3DEajL5CTALnbT9Fvgz0AP4DBgB9FVKFQeeoJSa4bRZCAwEbgEOOecOcbpoqXDOs8Bl6PJDV6PL9mwDclWQdbmdc25Dr3KzzWl/tXN+P1WL63LHK74C57m5Zfu+/FKvpLNkSW1ZZbFYLBZLHBHq+bfdzG4mxkxu2LDBE5omdEtLlbr77h0qIaFsHGVysh5bWV1MjD/xil9NaZrSNTVWKN79amMV37FSyt4HvWSrHTNpqRaFhYWe0DShKwK/+c0W3n8fGjXS+w4cgKFD9ezvw4ddfbtq4xW/mtI0qWuCePerjZWNlQmsX70Vr3DYZLIOsWjRIk9omtJdtGgRvXvD4sUQWPz/0Ufhsstgz57Q59Y0XvOrCUzpmiDe/WpjZWNlAutXb8UrHDaZtNQ5TjlFj5vMySnb9957eqLOGlsF1GKxWCwWV7HJZB2iY8eOntA0pRuomZ4OM2fC//1f2fHvv4dzzomNAude9asXdE0Q7361sbKxMoH1q7fiFQ6bTNYh2rRp4wlNU7oVNevVg4cfhtdeg+RkvW/3brj0UnjyST1Np7bwsl9jXdcE8e5XGysbKxNYv3orXuGwyWQdYvr06Z7QNKUbSvOqq44scH7bbTBypJ6kUxvUBb/Gqq4J4t2vNlY2ViawfvVWvMJhk0lLXNCpEyxdCl27lu175RVvFDi3WCwWiyWWiSqZFJGmInKliDwjIl+JyEYRKRKREhEpEJHvRWSGiPxFRLqYMtoSnObNm3tC05RuZZrHHguffKJ7JH189VXZSjo1SV3ya6zpmiDe/WpjZWNlAutXb8UrHKIqGTgmIgL8GrgWyAESfYfCnOYT3QC8DOQppTZXy9I6Rmpqqtq/f39tmxGXKAXPPAN//rN+5A1w1FHw0ku6LmVFOnXqxNKlS2vWSEuVsLHyDjZW3sLGyzuYipWILFNKdQp2LDHYzoATrwAeBE5FJ4+l6PWxlwIrgAJgF3AAaOxsJwKdgSzgJOB+4B4RGQ88oJTaVv1L8i4i0g/ol5qayrhx4wDo0qULzZo1Y/bs2QC0bt2a3r17M378eACSkpLIzc1lxowZbN++HYCBAweydu1aVqxYAUC3bt347LPPSEjQnc2ZmZlkZ2eTl5cHQEpKCsOGDWPatGns3LkTgMGDB7Ny5Uq+++47AHr06EFiYiLz5s0DoG3btvz3v//lsFPxOz09nSFDhjBlyhT27t0LwNChQ1myZAlrnJo7vXr1oqSkhAULFgDQvn17OnTowNSpemn0jIwMBg0axCOPPELjxo0ByM3NZeHChf41Svv06UNhYaG//lbHjh1p06aNf2xJ8+bNGTBgAHl5eRQX61U1R40axT//+U8aNGgAQE5ODvn5+SxevBiArKwsWrVqxcyZMwE4+eSWfPBBXwYMOEBRUTIHD8KwYfDWW//l4os/JiFB0b9/fzZt2kT37t0ZN26ca3FKS0vjtddeo0mTJq7FqXPnzkyePJkdO3Zw0kknuRanSZMm8dNPP9GkSRPX4jR37lw2btzIjh07uPrqq8PGqWXLlvTt25fx48dTWlpKQkICo0aNYtasWWzZsgXAH6dly5bRvXt3li9f7lqc5syZA8D+/fu56aabXIsTwO7du7n99ttdi1NRUREAiYmJtG7d2rU4gV4p7ZxzznEtTgCtWrVi8+bNrsYpMzOTjRs3UlJS4lqc0tPTOXDgAMnJya7GKTc3l7Fjx5KamupanHJycnj77bdJSkpyLU6++57vPuhWnLKzs3niiSdo0qSJa3Hy3ffWr19PkyZNXIvTwoULWbJkCU2aNHEtTr773o4dO+jdu7drcZo9ezbdu3fngw8+cC1OvvteWEItjQN8BRwGSoCPgeuAjFDtQ2icBzwHbEUnovuAgdFo1NXNxHKKL7zwgic0TelWRfPHH5Vq165sCUZQ6tJLldq1q6yNiaWp6rpfa0vX1DJi8e5XG6v4jpVS9j7oJVtjbTnFXwGvAKcppS5USr2olNpZeXpaLlH9XCl1M9AK/Zh8E9A+Gg2LxSRt2ugC5337lu17/31b4NxisVgslkgJOWZSRForpTa6+mZ6/GVLZcdPGhkz6esOj3VNU7rV0Tx8GO6+W9el9NGwIUyZAnfd5f74k3jxa03rmhorFO9+tbGK71iBmXhZv3rruxVuzGTIK3A7kXQ0lU0kzTHXwNIuJjRN6VZHs149eOih8gXO9+zRSzL+/PNQ1wucx4tfa0PXBPHuVxsrGysTWL96K17hsHUm6xC+wb2xrmlK1w3Nq66Czz6DVq3069JS2LTpVkaMcLfAebz5tSZ1TRDvfrWxsrEygfWrt+IVjmjrTB4tItki0jmCtp2dtslVN89iqXmysnTdyW7dyvZNnAg9eoAzkc5isVgsFouPUDNzgm3oGd2HgSciaDvOaZsbzXvEy2ZiNvemTZs8oWlK123NAweUuuaa8jO9W7RQ6quvqq8dz341qWtqFmO8+9XGKr5jpZSZeFm/euu7RRVncwdjkPNzYgRtx6FrU/4myvewVJH8/HxPaJrSdVvzqKNg/Hg4/vjHqFdP79u6FbKzdU9ldYhnv5rWNUG8+9XGysbKBNav3opXOKJNJk8FitEFyyvjP07b06I1ylI1fAWFY13TlK4JTRFo3nwqc+aAU2Odgwfh6qvhr3/Vs8CrQrz71aSuCeLdrzZWNlYmsH71VrzCEW0yeSywz+nuDItSqhQodM6xWDxNr156HOXpp5fte/xxXZ9y9+5aM8tisVgsllon2mRyL9BIRI6urKHTphHwSxXsslSBrKwsT2ia0jVlq4+TT4YvvoB+/cr2ffABnHMO/PBDdFrWr+bj5Sbx7lcbKxsrE1i/eite4Yg2mfzGOeeKCNoOBOoBK6M1ylI1Wvnq2cS4pildU7YGkp4OM2bAnXeW7VuzRieU778fuY71a83Eyy3i3a82VjZWJrB+9Va8whFtMvkGelLNkyIScllEEekAPAko5xxLDeBbJD7WNU3pmrK1IgkJ8OCDenWco50++j179CPvxx8nogLn1q81Fy83iHe/2ljZWJnA+tVb8QpHtMnky+jJN82AJSLynIjkiMgZztZXRP4FLAaaonslx7lrssUSGwwerAucH3+8fl1aqiflXH21uwXOLRaLxWKJZaJKJpVSJUAOsBxIBn4PvOO8Xg7MBG5wji0HcpRSh9wy1hKeli1bekLTlK4pW8Nx9tl6Ys5555XtmzSp8gLn1q+1E6+qEu9+tbGysTKB9au34hUOiWBi9pEniSQBo4DhQBaQ6BwqAZYBrwIvKaWKXbKzzpGamqr2799f22ZYIqBTp04sXbo0bJuDB+Gmm+Cll8r2tWgBb7+tx1NaaoZIYmWJDWysvIWNl3cwFSsRWaaU6hTsWJXW5lZKFSul/qWU6gqkoMv/HAukKKW6KqWet4lkzTN+/HhPaJrSNWVrJBx1FLz4IjzzDOUKnPfoAa++emR769fajVe0xLtfbaxsrExg/eqteIUjsfIm4XEefW93wZa4QET6Af1SU1MZN04PJ+3SpQvNmjVj9uzZALRu3ZrevXv7P2RJSUnk5uYyY8YMtm/Xrh44cCBr165lxQpdP75bt2788ssvfs3MzEyys7PJy8sDICUlhWHDhjFt2jR27twJwODBg1m5ciXfffcdAD169CAxMZF58+YB0LZtWw4dOuTXTE9PZ8iQIUyZMoW9e/cCMHToUJYsWcKaNWsA6NWrFyUlJSxYsACA9u3b06FDB6ZOnQpARkYGgwYNoqCgwK+bm5vLwoULWbduHQB9+vShsLCQRYsWAdCxY0fatGnD9OnTAWjevDkDBgwgLy+P4mL9P8uoUaPYvXu3XzMnJ4f8/Hx/QdisrCxatWrlH+zcsmVL+vbty/jx4yktLSUhIYFRo0Yxa9YstjjPp/v378+mTZvo3r0748aNiyhOt9ySy65dn/Hoo53Yvz+ZgwdhxAiYNGkFV1yxmPPP70paWhrbt29n3LhxrsWpc+fOTJ48mYKCAqZMmeJanCZNmuS31a04zZ07l40bN1JQUMDmzZtdi9OyZcvo3r07y5cvd+X7lJaWxpw5cwDYu3cvxcXFrsUJ8J/nVpyKiooAKC0t5aOPPnItTgDFxcUsX77ctTiBnsW6efNmV+OUmZlJSUmJ/z7gRpzS09MpLS11PU65ubnl7lluxCknJ4d9+/b5Nd2Ik+++57sPuhWn7Oxs/73FrTj57ns+XbfitHDhQr+mW3Hy3fcKCgpYtmyZa3GaPXs23bt354MPPnAtTr77XlhCrbMYyQYcA3QCsqujE4+bibW5X3zxRU9omtI1ZWtV1jldu1ap9u3Lr+t9ySVK7dqlj1u/mtE1tSZtvPvVxiq+Y6WUmXhZv3rru0WYtbmrOmZyMHAn4CsPpJRSiQHHGwFvossIXamU2hX1m9Rx7JhJ71DV8SeFhTBsGLzzTtm+tm3161NPddFAix87rss72Fh5Cxsv7+CJMZMi8jDwGtABvfa2QieNfpRSu4GfgQuAwdG+h6VqzJo1yxOapnRN2VpV0tL0BJy77irbt2YNdOkCo0d/ZeQ9veTXWItXOOLdrzZWNlYmsH71VrzCEVUyKSK9gb+h19weAjQA8kM0fwWdZPapjoGWyNkSrhZNDGma0jVla3VISIAHHoCpU8sKnO/dC/ff34XHHouswHk0eMmvsRivUMS7X22sbKxMYP3qrXiFI9qeyZvRPZF/U0q9oZQ6HKbtF07bjlU1zmKpK/zmN/D552UFzpUSbr9dFzj/xa5eb7FYLBYvE2owZbAN/ej6MJAasG8rcDhE+11AUTTvES+biQk427Zt84SmKV1Ttro5mHnbNqXOO6/8xJzOnZXatMktfe/41YSuqYHn8e5XG6v4jpVSZuJl/eqt7xZhJuBE2zPZCNirlIp05ohU3sTiFps2bfKEpildU7a6yTHHwMcfw4ABZaNDliyBzp3hKxeGUXrJr16Il49496uNlY2VCaxfvRWvcESbTO4E0kXk6MoaishxQDqwrSqGWaLHV28q1jVN6Zqy1W2SkuCSS97m2WfLFzjPzoZXXqmetpf86pV4gfWrjZWNlQmsX70Vr3BEm0wudn5eGkHbm5yfn0b5HhZLnUcEbr4Z5s6FjAy9r7gYcnPhttugpKRWzbNYLBaLJWKiTSbHox9dPyQiIVcnF5HrgNvRE3D+XXXzLNHQpUsXT2ia0jVlqwl8tl54oX7M3b592bEnn4ScHNhVheqsXvKrF+MV65qmdG2sbKxMYP3qrXiFI6pkUin1LrrGZFtgmYg8jV6bGxH5g4g8LiIr0QlkAvC8UuoLl222hKBZs2ae0DSla8pWEwTampkJX3wB/fuXHZ87F845B1avrrquW3jpM2CKePerjZWNlQmsX70Vr3BEXbQcyAWeBpoDtwBpzv6ngFuB053XTwB/qKZ9lijwrXEb65qmdE3ZaoKKtqalwVtvlS9w/uOPcO658N57Vdd1Ay99BkwR7361sbKxMoH1q7fiFY6ok0mlVIlS6lbgVGAM8DHwPbAGPT7yEaCDUuqvSqlSN421WOoyvgLnb7wBKSl639690LcvPPKI+wXOLRaLxWJxg8TKmwRHKbUWuNtFWyzVpHXr1p7QNKVrylYThLP1yivhlFP0Y++NG3US+X//B998A+PHl62kE62uCVtjUdcE8e5XGysbKxNYv3orXuEQZbs7aoXU1FS1f3+k5Tojo7S0lISEqoxcqFlNU7qmbO3UqRNLly51VTMSW7dvh0GD4NOAegidOun1vlu1qrputHjpM2AiVmD9amMV37GC2rsPxoqul2w19d0SkWVKqU7Bjrl6BSJyqYj8Q0SeEpFL3NS2VM748eM9oWlK15StJojE1ubN4aOP4Prry/YtXaoLnH/5ZdV1o8VLnwFTxLtfbaxsrExg/eqteIUjqmRSRH4jIltE5MUgx/4NzAL+ip54M1tE/uWOmRZLfJKUBP/+N4wdW1bgfNs26NED8vJq1TSLxWKxWIAoH3OLyGvAYGCQUurtgP3ZwHzn5ZfAL0BP53U/pVQU81HrNiLSD+iXmpp63ZNPPgnoOlPNmjXzz+pq3bo1vXv39v/HkpSURG5uLjNmzGD79u0ADBw4kLVr17JixQoAunXrxmeffebvLs/MzCQ7O5s8J+NISUlh2LBhTJs2jZ07dwIwePBgVq5cyXfffQdAjx49SExMZN68eQC0bduW//73vxw+fBiA9PR0hgwZwpQpU9i7dy8AQ4cOZcmSJaxZswaAXr16UVJSwoIFCwBo3749HTp0YOrUqQBkZGQwaNAgHnnkERo3bgxAbm4uCxcuZN26dQD06dOHwsJCFi1aBEDHjh1p06YN06dPB6B58+YMGDCAvLw8iouLARg1ahT//Oc/adCgAQA5OTnk5+ezeLGus5+VlUWrVq2YOXMmAC1btqRv376MHz/e/5hh1KhRzJo1iy1btgDQv39/Nm3axKRJk2jXrp1rcUpLS+O1116jSZMmUcXprbd28sILF7N/f7L/89Sr1zf8/e+7OPfcTkyePJkdO3Zw0kknuRanSZMm8dNPP9GkSRPX4jR37lw2btzIjh07uPrqq12L07Jly1i9ejUjRoxwLU5z5swBYP/+/dx0003V/j517tyZyZMnA7B7925uv/121+JUVFQEQGJiIq1bt3YtTgBKKc455xzX4gTw3nvvMXbsWFfjlJmZycaNGylxqv67Eaf09HQOHDhAcnKyq3HKzc1l7NixpKamuhannJwc3n77bZKSklyLk+++9/jjj9OuXTvX4pSdnc0TTzxBkyZNXIuT7763fv16mjRp4lqcFi5cyJIlS2jSpIlrcfLd93bs2EHv3r1di9Ps2bNZvXo1ffr0cS1OvvveDTfcEPIxd7TJ5PfAKUBzpdSOgP15wNXAOKXU75x9dwAPAjOUUldE/CZxgokxkxYzmBp/UhXWr4fLLoOVK8v2XXwxTJ0KTm4e18RSrCzhsbHyFjZe3sELYyabAQcCE0mH3ujVbv4ZsG+s87NulHf3ADNmzPCEpildU7aaoKq2nnQSLFoEAwaU7fvwQ+jSRRc495Jf4yFeNa1pStfGyn1NU7rxHitTul6ytTaINplMAw4F7hCRE4FjgS1Kqe99+5VSe4Dd6ATUUgP4uq5jXdOUrilbTVAdW9PSYPp0uOeesn1r1+oVc+bNO8oF68rjpc+AKbz0efWSrSbw0vV7yVYTWL96K17hiDaZ3AmkiUhGwL6LnZ+fBWlfH9hXFcMsFktoEhLgvvvgzTfLCpwXFsLYsZfYAucWi8ViqVmUUhFvwHvAYeAB5/XRwHJn37UV2h4LlAIro3mPeNlSUlKU2xQUFHhC05SuKVuzsrJc13TT1q+/Vqp1a6V0Cqm33/5WqaIid/S99BkwESulvPV59YqtNlbesjXW74Omdb1kq6nvFrBUhchpou2ZfAEQ4A4R+Q74ETgT2AW8UaHtBc7Pb6J8D0sVWbt2rSc0TemastUEbtp61lmwZAl0716277XX9OtNm6qv76XPgCm89Hn1kq0m8NL1e8lWE1i/eite4YgqmVRKzQQeRk+2aQe0RD/6Hq6UKqzQfITz86PqGmmJDN/0/ljXNKVrylYTuG2rr8B5dvYq/75ly/SKOV98UT1tL30GTOGlz6uXbDWBl67fS7aawPrVW/EKR9Qr4Cil7gRORtebvBRoo5R6P7CNiNRHPxK/FXjHBTstFkslJCXB0KGf8a9/QWKi3vfzz9CzJ0yYUKumWSwWi6UOkxjuoIhkKKV2VtyvlPof8L9Q5ymlDgHPVN88SzR069bNE5qmdE3ZagKTfu3QAdq10+t679gBxcVwzTXwzTfw2GNliWYs2OoVvPR59ZKtJvDS9XvJVhNYv3orXuGorGfyZxFZKCJ/E5H2NWKRpcqkpaV5QtOUrilbTWDarz176nGUZ5xRduyf/4Rf/xp2HvHvYWSabhPv8fKSX22sbKxMYP3qrXiFo7JkcjdwPvAQ8I2IrBORZ0Skj4gkGbfOEhW+JZBiXdOUrilbTVATfvUVOL/88rLjH36o61GuXl01TTeJ93h5ya82VjZWJrB+9Va8wlFZMtkcnUw+CqwCTgRuRo+HLBCRt0TkWhE5xqiVFoulSjRoANOmwb33lu3zFTifNav27LJYLBZL3SFsMumUFlqklPq7UuoMypLJuejxlgOAccBmEVksIveIyNmGbbaEIDMz0xOapnRN2WqCmvRrQgKMHq2TysAC55ddBv/4R+UFzr30GTCFlz6vXrLVBF66fi/ZagLrV2/FKxyiqrhUhoikABcB/YBfAy2cQwrYCsx2tg+VUr9U39S6RWpqqtq/f7+rmsXFxSQluTv6wISmKV1Ttnbq1ImlS5e6qllbfl2xAvr3h/8FTJ+76ioYP74s0YxWs6qY0DURK/DW59UrttpYecvWunQfjBVNU7qmvlsiskwp1SnYsahLA/lQShUppd5RSl2nlDoO6AzcD3yNTiyvA94GdojIbBH5vX0cbpa8vDxPaJrSNWWrCWrLrx076ok52dll+15/Xb8OVeDcS58BU3jp8+olW03gpev3kq0msH71VrzCUeVksiJKqWVKqdFO1nocOpl8F73U4qXAc8ANbr2fxWKpGs2a6Yk4v/td2T5fgfNFi2rPLovFYrF4E9eSyUCUUtuUUi8ppQYATdCPwf8FbDHxfhZNSqjnlDGmaUrXlK0mqG2/JiXB88/rrWKB85dfrppmtMR7vLzkVxsrGysTWL96K17hqPKYSUvVEJF+QL/U1NTrnnzySQC6dOlCs2bNmD17NgCtW7emd+/ejB8/HoCkpCRyc3OZMWMG27dvB2DgwIGsXbvWvxRTt27dSEtL85cZyMzMJDs729+FnpKSwrBhw5g2bRo7nUKDgwcPZuXKlXz33XcA9OjRg8TERObNmwdA27Zt6dy5M5MnTwYgPT2dIUOGMGXKFPbu3QvA0KFDWbJkCWvWrAGgV69elJSUsGDBAgDat29Phw4dmDp1KgAZGRkMGjSISZMmUVRUBEBubi4LFy5k3bp1APTp04fCwkIWOd1kHTt2pE2bNkyfPh2A5s2bM2DAAPLy8iguLgZg1KhRzJ07l40bNwKQk5NDfn4+ixcvBiArK4tWrVoxc+ZMAFq2bEnfvn0ZP348paWlJCQkMGrUKGbNmsWWLfp/nv79+7Np0yYmTZpEu3bt6myc1qxpwUsvXcLu3fX9n9NLL/2Rd945hSlTvBOnZcuWsXr1akaMGFEn4wR14/u0bNkyAN577z3Gjh1r4xTjcfLd9x5//HHatWtn4xTjcZo9ezarV6+mT58+rsfphhtuCDlmEqVUxBuQAfQGzglyrCUwFdgG7AJeB1pGox9PW0pKinKbN9980xOapnRN2ZqVleW6Zqz5df16pc48Uyk9t1tvF12k1I4dsWdrOEzESilvfV69YquNlbdsjYf7YE1rmtI19d0ClqoQOU20j7mvB94HfhO4U0SSgYXAIHRtyoZOm/kikhrle1iqyM5olzapJU1TuqZsNUGs+fXEE+Hzz2HgwLJ9H30EXbrAypVmnl7Ee7xi7TNQ05qm8NL1e8lWE1i/eite4Yg2mezj/JxcYX8ukAnsBH4HjAA2Ayej61JaLJYYp0EDeOMNXZPSx3//C//4R3/efbfWzLJYLBZLrBOqyzLYBmxAz85OrrB/nrN/VMC+XkAp8GU07xEvm4nH3Lt37/aEpildU7aaeGQQ636dPl2p1NSyR94iSo0Zo1RpqSvySikzPjD1eMdLn1ev2Gpj5S1b4/E+aFrTlK4XHnM3A3YrpQ74dohIItDVSRzfDGj7sZNgnhp9imupCitXrvSEpildU7aaINb9esUVukzQiSfq10rBnXfqAufOuPRqE+/xivXPgGlNU3jp+r1kqwmsX70Vr3BEm0wKUHEMZBaQDKxQSu3x7XSy2D3A0dWy0BIxvllvsa5pSteUrSbwgl/PPFMXOG/btqyi19Sp0L07/PRT9fXjPV5e+AyY1DSFl67fS7aawPrVW/EKR7TJ5E9AfRE5M2DfAOfnp4ENRSQBSAPyq2ydxWKpVZo2hT/9aTY33li27z//0QXOP/+89uyyWCwWS+wQbTL5Mbp38nkR6SwilwE3otfjrjhE/3SgPhBikTaL2/To0cMTmqZ0TdlqAi/59cILsxk7Fv7977IC59u3wwUXwEsvVV033uPlpc+AjZWNlQmsX70Vr3BEm0w+AhQC5wJfotfeTgMWKaU+rtD2MnSSaRdoqyESfX/pY1zTlK4pW03gRb/ecAPMm6d7KwEOHYJRo+APf4CSkqrregEvfV69ZKsJvHT9XrLVBNav3opXOKJKJpVSG4ALgAXAAWA7MAHoH9hOROqh1+YW4CM3DLVUjm9lgFjXNKVrylYTeNWv2dl6HOWZAQNdnn0WLrkEduyoum6s46XPq5dsNYGXrt9LtprA+tVb8QpH1GtzK6X+o5S6UCmVqpRqoZS6VilVsepmKXAW0Bj4wAU7LRZLjHDiiXqmd2CB83nzdIHzOjKW3GKxWCxREHUyGQlOSaI9zmYX/64h2rZt6wlNU7qmbDWB1/2amqoLnN93X9m+devg3HPhnXeqrhureOnz6iVbTeCl6/eSrSawfvVWvMJR5WRSRBJF5BwRGSQiV7tpVIj3GyYiytlGhWjTV0Tmi8geEdknIl+JyIhKdEeIyGKn/R7n/L5h2tcTkVtF5BsR+UVEdorIeyLSrbrXWF06d+7sCU1TuqZsNUFd8GtCAtxzD7z1lk4uAfbtgwEDYMwYXZuyKrqxiJc+r16y1QReun4v2WoC61dvxSscVUomReRvwDb05Jqp6HGTgccbicgqEVkrIi2ra6SIHA88B+wL0+Zm9IzyDsAk4EWgJZAnIo+HOOdxIA9o4bSfBJwBvOvoVWwvwBTgSSDJseltIBtYKCL9K55Tk0yeXHGVy9jUNKVrylYT1CW/Xn45fPFF+QLnd91VeYHzeI9XXfoMxBJeun4v2WoC61dvxSscUSeTIjIZeAg9HnI9cMQ8TqXUbvQknZOAIdUx0EngJgA7gH+HaHMi8Dh6bfBOSqmblFK3AmcC/wVuE5GuFc7pBtzmHD9TKXWrUuomdBH2ncDjjm4gQ4BB6CT6LKXUX5VS16InJR0GXhSRtOpcr8XiRc44Q0/M6dmzbN/UqXD++bBxY62ZZbFYLJYaIKpkUkSGAFeheyW7KaXaoBOvYExGz+a+qFoWwh+AC4GRwP4Qba4BjgKec2acA6CU2oVOfAF+V+Ec3+sxTjvfORuAsY7eyArn/N75eVfgkpJKqSXoHtpm6GSzVkhPT/eEpildU7aaoC76tWlTmDuXcgXOv/4aOneGzz6rum4s4KXPq5dsNYGXrt9LtprA+tVb8QpLqEW7g23Ah+geuCsD9m0FDgdpm4zutdwYzXtU0GgH/AI85bweja5dOapCu8+c/V2DaLRwjv1UYf8mZ3+LIOd0dY59GuR69gOJQc65yjlnYiTXlpKSEm49dUsMkZWVVdsmeI4XXlAqMVEp/dBbqfr1lXrxRfPva2PlHWysvIWNl3cwFStgqQqR00RbLfNXTsJU6XxNpdQBEdmD7q2LGhFJBCYCG4E7Kml+qvNzTRA7torIfqCViKQopYpEJBU4DtinlNoaRO9H52fgNKuTgXrAOqVUsBLNwc4ph4hcD1zv/E6nTp3CXVPU7Ny5k4yMjJjXNKVrytbVq1d7IlamdKuqmZn5K9ate5SSksYcOgTXXQd33DGF449/CpHDRmw1ESuILb/Whq6NVXzHCux90Eu2mvpuhSVUlhlsQxcq31VhX9CeSedYITphq0qv5P3oXtCuAftGE7xnstjZf0SPoXN8MwG9kOiJOQrYFKJ9fef4wYB93Zx9n4U45xTn+A+RXJ+JnskXXnjBE5qmdE3ZauK/vHjx64YNSnXsWNZDCUpdeKFSBQVmbDX1H3ms+bWmdW2s4jtWStn7oJdsrY2eyWgn4OQD6ZFMMhGRU4BUqrA2t4icg+6NfEIp9UW051ssltjghBPg889hUMBI4o8/1gXON29uXHuGWSwWi8U9QmWZwTZ0WZzDwDUB+0KNmRzntH0+yvdIBH4AVgFHVTg2muA9k/nO/iYhNPc5x1Oc16nO68IQ7Zs6x38O2Nfe2fdtiHM6Oce/iuQ6TfRM7tu3zxOapnRN2Wriv7x482tpqVL331++h7JBg1I1Y4YLBgZg6j/yWPVrTema0LSx8pat9j7oHVu90DP5LHqG9oMi0iFYAxE5SkTGAKOc5Oq5KN+jAXrcYTvgQEChcgXc67R50dn3T+f1D87PI8YrikgLnB5SpVQRgFJqP/rRdwPneEVOcX4GjsH8Lzo5znTGc0ZyTo2yZMkST2ia0jVlqwniza8icPfd8Pbb0KCB3rdvn0Rc4Ly2iVW/1pRuvH+3bKzMYP3qrXiFI6pkUin1OfAYcCzwlYjMBNIARORJEZmGTtL+zznlHqVUtKv1HgReCrF97bT5zHntewT+sfPzkiB6l1ZoQ4XXEZ2jdCmgRUAK0D2K96kx1qxxP481oWlK15StJohXvw4YoAucn3RS2b677oIhQ2B/qMJfMUCs+9W0brx/t2yszGD96q14hSPqouVKqb8Bt6J76fqhkysB/ghcAWQARcAflFIPhdIJo/+LUmpUsI2yWeSvOPumOq8noJPQmwMLjYtIY8pmglcseO57fafTznfOicBNjt6ECuc87/x8UESSA87pDAxGP26fHu01WyzxRIcOusD5qadu9u974w1b4NxisVi8SpWWU1RKPQ0cj36U/TLwPjAXeBVd2PsEpVS0j7erjFJqPfBXdCK7VETGishTwDfokj5HTORRSi1CL4t4MvCNiDwlImOBpY7OX1RAAXSHKcA09Mzur0XkURF5CfgEXTboOqXUXlPXWRm9evXyhKYpXVO2miDe/dqkCcyYcYCbAxYtXb4cOnWCTz91/e2qjVf8ako33r9bNlZmsH71VrzCEW2dST9KqT3oRPJl98ypOkqpZ0VkA/AX4Gp0orwKvVrNKyHOuU1EvkX3RF4PlAL/AR5TSs0K0l6JyFXox93XALegyyUtBB50EtRao6QkWPnL2NM0pWvKVhNYv4JICc8+C2eeCTfdBIcOQX4+9OoFY8fqupSxgpf86iVbTeCl6/eSrSawfvVWvMJRpZ7J2kIpNVopJUqp8SGOv6uU6qGUSlNKpSqlOodKJAPOyXPapTrn9QiWSAa0L1FKPaWUOkMpdbRSqrFS6te1nUgCLFiwwBOapnRN2WoC69cy3euu0+WCmjnLGxw6BNdfDzffrH+PBbzo11jXNIWXrt9LtprA+tVb8QqHp5JJi8VSNzn/fFi6FM46q2zf2LHQpw8UFNSaWRaLxWKJgJCPuUXE9/h6q1Lqzgr7okEppa6tinGW6Gjfvr0nNE3pmrLVBNavR+q2bg2ffQYjR8Kbb+p9n3yiC5zPnAlnnGHEjIjwsl9jVdMUXrp+L9lqAutXb8UrHOHGTOY6P78H7gzYp9CztyNFATaZrAE6dAha+jPmNE3pmrLVBNavwXVTU2HqVOjYUZcMAli/Hrp2hUmTdGmh2sDrfo1FTVN46fq9ZKsJrF+9Fa9whHvMfZ+zja2w7/6AY5Fs97tutSUoU6dOrbxRDGia0jVlqwmsX0PrisCdd8KMGWUFzvfvh8svhwceqJ0C53XBr7GmaQovXb+XbDWB9au34hWOkD2TSqn7ItlnsVgsJujfXxc4798f1q3T++65B775BvLydC+mxWKxWGqfqCbgiMiZztbAlEGWqpORkeEJTVO6pmw1gfVrZLodOsDixXDhhWX7pk2D886D//3PiFlBqWt+jQVNU3jp+r1kqwmsX70Vr3CIiuKZkYiUomsxHquUsnMsq0FqaqraH8vrx1n8dOrUiaVLl9a2GXHNoUNw223w7LNl+5o1g+nToXvA4qY2Vt7Bxspb2Hh5B1OxEpFlSqlOwY5FWxpoD7DHJpKxyaRJkzyhaUrXlK0msH6NTrd+fXjmGXjxRf076ALnF14I48YZMa8cddWvtalpCi9dv5dsNYH1q7fiFY5ok8k1QFrgutSW2KGoqMgTmqZ0TdlqAuvXqumOGqULnDdvrl+XlMANN5StoGOKuu7X2tA0hZeu30u2msD61VvxCke0yylOBDqjlyusgf6AuoeI9AP6paamMs7pUunSpQvNmjVj9uzZALRu3ZrevXszfrxe6CcpKYnc3FxmzJjB9u3bARg4cCBr165lxYoVAHTr1o2DBw/6NTMzM8nOziYvLw+AlJQUhg0bxrRp09i5cycAgwcPZuXKlXz33XcA9OjRg8TERObNmwdA27ZtOXz4sF8zPT2dIUOGMGXKFPbu1UuQDx06lCVLlrBmzRpArzNaUlLir+rfvn17OnTo4J+xlpGRwaBBg9i5c6dfNzc3l4ULF7LOmWXRp08fCgsLWbRILyrUsWNH2rRpw/Tp0wFo3rw5AwYMIC8vj+LiYgBGjRrF3r17/Zo5OTnk5+ezePFiALKysmjVqhUzZ84EoGXLlvTt25fx48dTWlpKQkICo0aNYtasWWzZsgWA/v37s2nTJrp37864ceNci1NaWhoFBQWMGzfOtTh17tyZyZMnU1BQwJQpU1yL06RJk/y2uhWnuXPnsnHjRgoKCti8eXOV4vTwwx8xevRZ/PRTUwD+9S/46KMtXHDBJSxfvty1OM2ZMweAvXv3Ulxc7FqcAP95bsXJ90eptLSUjz76yLU4ARQXF7N8+XJXvk/Lli0DoFWrVmzevNnVOGVmZlJaWuq/D7gRp/T0dCNxys3NLXfPciNOOTk5FBUV+TXdiJPvvue7D7oVp+zsbP+9xa04+e57Pl234rRw4UK/pltx8t33CgoKWLZsmWtxmj17Nt27d+eDDz5wLU6++144oh0zKcBbQB/0utQTlFKlEQtY/JgYM1lcXExSUlLMa5rSNWWrifEn1q/V1y0q0gXO33ijbF9S0maWLj3O9QLn8eTXmtI0Na7LK9dvStfeB73lVy99t9wcM/kSsBsoQfdMbhOR90TkFRF5OcT2UvXMt0TKwoULPaFpSteUrSawfq2+bkoKTJkCY8aU7SsuPo6uXeHtt6tpXAXiya81pWkKL12/l2w1gfWrt+IVjmgfc+dSfgWcpsAllZxjV8CpIXyPtWJd05SuKVtNYP3qjq4I3HGHLiE0dCjs26cLnF9xBdx3n15FJyHaf5kN2VoTmqZ04/27ZWNlButXb8UrHNEmk7ZoucViiTkuuwy+/BLOPnsTxcWtALj3Xl3g/JVXyhc4Ly2FiRNh+HB3Ek2LxWKJe5RSdquFLSUlRbnNhg0bPKFpSteUrVlZWa5rWr+a0e3Y8UJ14YVK6UUX9daxo1K+tzp8WKmRI/X+kSP169qy1Ut+NaFp4nullHeu35SuvQ96y69e+m4BS1WInMb+X16HKCws9ISmKV1TtprA+tWMbmLiHubMgT/8oWzfihXQqRPMn69LC02YoPdPmKBfl0YwhTDe/Rrv3y0bKzNYv3orXuGoVjIpmqYi0totgyxVx1eqINY1TemastUE1q/mdBMT4emnYfz4sgLnBQW6wLkvkfQRaUIZ736N9++WjZUZrF+9Fa9wVCmZFJGuIvIOsBf4GVhX4XgjEXlJRMaLSIoLdlosFktUXHstfPKJXnYR9EPvYETTQ2mxWCyWI4k6mRSRm4CFQF8gFT2zWwLbKKV2o2d6jwQGVttKS0R07NjRE5qmdE3ZagLr15qJV9eucMEFlberLKGMd7/G+3fLxsoM1q/eilc4okomRaQL8DRQCvwf0BrdMxmMCegk89fVMdASOW3atPGEpildU7aawPrVfLxKS3WCGFjUPBzhEsp492u8f7dsrMxg/eqteIUj2p7JP6MTxNFKqUeVUpvCtF3g/Dy7SpZZosa3nFOsa5rSNWWrCaxfzcdr4sQjx0hWxoQJ+ryKxLtf4/27ZWNlButXb8UrHNEmk92dn/+qrKFSahdQCLSK1iiLxWKpLsOH6+UWo2HkSH2exWKxWCIn2mSyKbBXKbUnwvaHq/AelirSvHlzT2ia0jVlqwmsX83HKyFBz+iONKHMzdXtgxUyj3e/xvt3y8bKDNav3opXOESFmuIYrLHIdiADSFFKFTv7tgLNlVL1KrRtih5PuVkpZUsHVSA1NVXt37+/ts2wRECnTp1YunRpbZthiYBgsfKNnazskffo0XrVHEvNYL9X3sLGyzuYipWILFNKdQp2LNpewxXoMZPdK2uIXsdbgK+ifA9LFcnLy/OEpildU7aawPq15uIVaQ/l6NHw3HPBj8W7X+P9u2VjZQbrV2/FKxzRJpOvohPEh0WkQahGItIbuB9QwMtVN88SDcXFxZ7QNKVrylYTWL/WbLxCJZRXXw0XX1z2+pZbYNKkI8+Pd7/G+3fLxsoM1q/eilc4EqNsPwm4GugFfCUi44GjAESkH3ACcCnQB52ovq2Uet89cy0Wi6Vq+BJK0I+8R47Ur3/5RSeUX3yhj+XmQsOG0K9frZlqsVgsniKqMZMATo/kRKA/uufxiCbOz7eAq5VSRdWysI7hJN39UlNTr3vyyScB6NKlC82aNWP27NkAtG7dmt69ezPe+cuXlJREbm4uM2bMYPv27QAMHDiQtWvXsmLFCgC6detGamoqH374IQCZmZlkZ2f7u9BTUlIYNmwY06ZNY+fOnQAMHjyYlStX8t133wHQo0cPEhMTmTdvHgBt27YlKyuL119/HYD09HSGDBnClClT2Lt3LwBDhw5lyZIlrFmzBoBevXpRUlLCggW6MlT79u3p0KEDU6dOBSAjI4NBgwYxadIkior0RyM3N5eFCxeybp1eSKlPnz4UFhb6l5nq2LEjbdq08ZdQaN68OQMGDCAvL8//X92oUaOYO3cuGzduBCAnJ4f8/HwWL14MQFZWFq1atWLmzJkAtGzZkr59+zJ+/HhKS0tJSEhg1KhRzJo1iy1btgDQv39/Nm3axKRJk2jXrp1rcUpLS2POnDmuxqlz585Mnjw5ruO0bNkyVq9ezYgRI8LGKTExiXr1cklLm0FBwXbHH4Po0yeZ//43xYllKa+8sp29e98B4KSTTqJHjx6uxiktLY2rrrrK9ThdffXVfPbZZ67G6dJLL2XHjh2uxQngvffeY+zYsa5/n84//3xeffVV1+KUnp7Ob37zG9544w3Xv08LFixg/fr1rsUpJyeH7du3s2TJEtfi5LvvPf7447Rr187e92LwvhcYp9mzZ7N69Wr69OnjepxuuOGGkGMmUUpVaUP3Tk4E1gL7gV+ADcDrQJ+q6sbLlpKSotzm/fff94SmKV1TtmZlZbmuaf1qRrc6sdqyRamTT1ZKL7yoVFqaUkuW6GPx7tdYi1U4vHL9pnTtfdBbfvXSdwtYqkLkNNE+5g5MQucB86p6vsV9fP/1xLqmKV1TtprA+jX24tWiBXz4IZx3HmzdCoWFcMkl8Omn1q+xFqtweOn6vWSrCaxfvRWvcNgakBaLxeJw0kk6oczI0K937IDevWHHjpDzDS0WiyXusclkHSInJ8cTmqZ0TdlqAuvX2I1X+/bw/vuQmqpfb9oEL774G37+2d338ZJfYzVWwfDS9XvJVhNYv3orXuGIKpkUkXuqspky3lKe/Px8T2ia0jVlqwmsX2M7Xl26wMyZkJSkX69fn8gll8Du3e69h5f8GsuxqoiXrt9LtprA+tVb8QpHtD2To4F7o9h87S01gG9mWKxrmtI1ZasJrF9jP169esGUKWXLKy5frssFFblUn8JLfo31WAXipev3kq0msH71VrzCEe0EnFcJXg7IR0MgCzge2Am8W0W7LBaLpda5/HJ46aWyYueffQaDBsGMGWW9lhaLxRLvRJVMKqVyI2knIsOAcUCJUuq6KthlqQJZWVme0DSla8pWE1i/eideubnw7bc/8eSTxwN6POWIEXqlnHr1qq7rJb96JVbgrev3kq0msH71VrzCYWQCjlJqEnArcI2IjDDxHpYjadWqlSc0TemastUE1q/eitfttydx991lr6dMgZtv1hUpq4qX/OqlWHnp+r1kqwmsX70Vr3CYnM39KnAY+L3B97AE4KueH+uapnRN2WoC61fvxeu++3QC6ePf/4a77qqepgm89BkwgZeu30u2msD61VvxCoexZFIp9QtQBJxu6j0sFoulphCBp5+GoUPL9j30EDz+eO3ZZLFYLLGAsWRSRE4E0oFSU+9hKU/Lli09oWlK15StJrB+9Wa8EhJgwgTo27fs2F//Cs7yt1XSdBsvfQZM4KXr95KtJrB+9Va8wiGqOoN+QomKHANMAbKBT5RSF7n+Jh4nNTVV7d+/v7bNsERAp06dWLp0aW2bYYmAmorVL7/ApZfCggX6dUICTJ2qZ3pbIsN+r7yFjZd3MBUrEVmmlOoU7Fi0RctfrmR7TUQWAhvQiWQpMKbaV2CJiPFV6R6pBU1TuqZsNYH1q7fjdfTR8M47cPbZ+nVpKfz2t3opxqpquoWXPgMm8NL1e8lWE1i/eite4Yi2zmQuus6kRNB2C3CzUuqTaI2yVI3SUvdHFJjQNKVrylYTWL96P17p6fDBB9C9O/zwAxw6BAMGwEcfQdeuVdN0Ay99Bkzgpev3kq0msH71VrzCEW0yeV8lx0uA3cC3wOdKqcNVMcpSNRIS3B8Ca0LTlK4pW01g/Vo34tWsme6NPO88+OknvTrOr3+tH3+feWbVNKuLlz4DJvDS9XvJVhNYv3orXuEwMmbSUjl2zKR3sGOFvENtxWrNGjj/fPAts3vssXq1nJNPrnFTPIP9XnkLGy/vUBtjJqPtmbRUExHpB/RLTU1l3LhxAHTp0oVmzZoxe/ZsAFq3bk3v3r39YymSkpLIzc1lxowZbN++HYCBAweydu1aVqxYAUC3bt349ttvKSwsBCAzM5Ps7Gzy8vIASElJYdiwYUybNo2dO3cCMHjwYFauXMl3330HQI8ePUhMTGTevHkAtG3bll27dvkXok9PT2fIkCFMmTKFvXv3AjB06FCWLFnCmjVrAOjVqxclJSUscGYmtG/fng4dOjB16lQAMjIyGDRoEE899RSpqakA5ObmsnDhQtatWwdAnz59KCwsZNGiRQB07NiRNm3aMH36dACaN2/OgAEDyMvLo7i4GIBRo0bxwgsvUM9ZkiQnJ4f8/Hz/uqdZWVm0atXKX9OrZcuW9O3bl/Hjx1NaWkpCQgKjRo1i1qxZbNmyBYD+/fuzadMmunfvzrhx41yLU1paGm+88QYNGzZ0LU6dO3dm8uTJ7Nmzh+OPP961OE2aNImtW7fSsGFD1+I0d+5cNm7cyJ49e/jtb3/rWpyWLVtG9+7dWb58uWtxmjNnDgBKKUaOHBk2TtOmXcWvf300+/cnsm0b9OxZzNSpW1i5cu4RcQIoKiriT3/6k2txKnIWDT/mmGNITU11LU4ADRs25NRTT3UtTqCLNW/evNnVOGVmZrJ//35+/vnnkHGK5vsE+r7XoEED9u3b52qccnNzmTBhAiLiWpxycnL46KOPOHjwoGtx8t33fPdBt+KUnZ3N008/TcOGDV2Lk+++99NPP9GwYUPX4rRw4UK+/vprGjZs6FqcfPe9PXv2cOGFF7oWp9mzZ9O9e3c++OAD1+Lku++FRSllt1rYUlJSlNu88MILntA0pWvK1qysLNc1rV/N6JqIlVKR27pwoVLJyUrptXGUOv10pQoKqqcZLV75DNR2rGpb05SuvQ96y69e+m4BS1WInCaqnkkRuTqa9pUksa+6pWWxWCyxQPfuMH069O8PJSWwapUeQzlvHjRoUNvWWSwWiyFCZZnBNnSpn8NubNG8b13cTPRMbtu2zROapnRN2WrivzzrVzO6pv4jj9bW115TSqSsh7JXL6V++aV6mpHilc9ArMSqtjRN6dr7oLf86qXvFmF6JqOdRrTQ2faiywMJsAn4ytl+Cti/J6B9sM3iMps2bfKEpildU7aawPq1bsfrqqtg7Niy1/Pm6X0lJVXXjBQvfQZM4KXr95KtJrB+9Va8whFVMqmU6gksAxoCLwEnK6VOUEp1c7YTgUzgRaAROou9INjm6lVYAPwDcWNd05SuKVtNYP1a9+P1+9/DmIAlG2bMgOuu0wXOq6oZCV76DJjAS9fvJVtNYP3qrXiFI9oVcIYBtwKPKKWuU0qtr9hGKbVBKXUD8A/gzyLyW3dMtVgsFm/x97/DX/5S9jovT79WtiKbxWKpQ0T7mPsm9LjJhyNo+w+n7U3RGmWpGl26dPGEpildU7aawPo1PuIlAo8+CtdeW7bvqad0j6WX/BoPsappTVO68R4rU7pesrU2iLbO5OnAXqXU3soaKqX2isheoH2VLLNETbNmzTyhaUrXlK0msH6Nn3iJwAsvwO7deqY3wN13g8iJnHWWK+aVw0ufARN46fq9ZKsJrF+9Fa9wRNszqYCGItK8soZOm0ZVMcpSNXzFf2Nd05SuKVtNYP0aX/GqVw8mT4aLLy7bd9ddjXDqLbuKlz4DJvDS9XvJVhNYv3orXuGINpn8D3qm9qMRtH3UaWvXX7JYLHHPUUfBW2/BueeW7RsxAmbNqj2bLBaLxQ2iTSZ9CeJwEflQRC4SkaN9B0Uk2dk3FxiO7smMJPG0uEDr1q09oWlK15StJrB+jc94NWgAs2dDhw769eHDcOWV4Kzu5gpe+gyYwEvX7yVbTWD96q14hUNUlNMKReSv6Mk1PkrRNSVBlwxKQCecCvibUupxF+ysc6Smpqr9+/e7qulbwzPWNU3pmrK1U6dOLF3qbge79asZXROxAvdt3boVzj9fsW6dXpc5LQ3mz4ezz66+tlc+A16JlSlNU7r2Pugtv3rpuyUiy5RSnYIdi/oKlFKPAT2A+c6uekCGs9Vz9s0Dsm0iWbP4FnSPdU1TuqZsNYH1a3zHq0ULuOaaKbRooV8XFkKfPvD999XX9tJnwAReun4v2WoC61dvxSsc0c7mBkAp9RnQS0QaA78CfNOR8oGvlVK7XLLPYrFY6iTNmhUydy5kZ8OuXVBQAL17w2efQR158mWxWOKEKiWTPpyk8WOXbLFUk6SkJE9omtI1ZasJrF9tvJKSkujQAd57Dy66CPbvh59+0jO+P/0UmldaMyO0rtvYWHnnOxDvsTKl6yVba4Oox0xa3MHEmEmLGUyNP7G4j1dj9dFHkJMDxcX69a9+BZ98Ag0b1q5dJvFqrOIVGy/v4IkxkyJyhYhcXX2zLG4zY8YMT2ia0jVlqwmsX228AjUvughefx184/C//hr69YOiourpuoWNlfuapnTjPVamdL1ka21QlcfcTwDHA6+6bEtcICL9gH6pqamMGzcO0MspNWvWzF+8tHXr1vTu3ds/MDcpKYnc3FxmzJjB9u3bARg4cCBr165lxYoVAHTr1o2ffvrJr5mZmUl2djZ5eXkApKSkMGzYMKZNm8bOnTsBGDx4MCtXruS7774DoEePHiQmJjJv3jwA2rZty9atW/2a6enpDBkyhClTprB3r14EaejQoSxZsoQ1a9YA0KtXL0pKSljg1Dpp3749HTp0YOrUqQBkZGQwaNAgvv/+e79ubm4uCxcuZN26dQD06dOHwsJCFi1aBEDHjh1p06YN053lQ5o3b86AAQPIy8uj2OnKGTVqFGvXrvVr5uTkkJ+fz+LFiwHIysqiVatWzJw5E4CWLVvSt29fxo8f759NN2rUKGbNmsWWLVsA6N+/P5s2baJ79+6MGzfOtTilpaWxatUqtm/f7lqcOnfuzOTJkykoKODAgQOuxWnSpEls3LiR7du3uxanuXPnsnHjRgoKCujcubNrcVq2bBndu3dn+fLlrsVpzpw5AOzdu5fi4mLX4gT4zwuM03PPjeDGG48C9KPunJz9PPvsJhYtqjxORU7mWVpaykcffeRanACKi4tZvny5a3ECaNWqFZs3b3Y1TpmZmWzbts1/H3AjTunp6ezdu9e175MvTrm5ueXuWW7EKScnhw0bNvg13YiT777nuw+6Fafs7Gz/fdCtOPnue+vWrWP79u2uxWnhwoV+W92Kk+++V1BQwPHHH+9anGbPnk337t354IMPXIuT774XFqVUVBuwHjgcZP9WoCRavXjdUlJSlNu88MILntA0pWvK1qysLNc1rV/N6JqIlVI169cnnlAKyrarrlLq8OHq61YHGyvvfAfsfdBbfvXSdwtYqkLlhqEO6PP4FHgIyAEaqcqTySP2263mksmCggJPaJrSNWWriS+m9asZXVM30Zr26113lU8of/97pUpLq69bVWysvPMdsPdBb/nVS9+tcMlkZWMmzwP+D3gHKBCRb4HmACLSsvJ+T0tNsnbtWk9omtI1ZasJrF9tvMJp3n8/3Hhj2evnn4e7766+blWxsfLOdyDeY2VK10u21gaVJZPHAUOAfwErgXbA0egVbn4SkXUi8oqIXAfUjfntHsY37iHWNU3pmrLVBNavNl7hNEXg2Wfht78t2zdmDDzxRPV0q4qNlXe+A/EeK1O6XrK1NgibTCqltiql3lBK3aKUOgtoin6crYAvgZboNbj/DTQGEJHpIvInEfmViIhR6y0Wi6WOkpAAeXm6ZJCPv/wFXn651kyyWCyWoERVGkgptRsodn4/D2gEXADcC/ziNLsceBJYCuwUkVku2WqphG7dunlC05SuKVtNYP1q4xWJZv368OabepUcH9ddB87E0SrrRouNlXe+A/EeK1O6XrK1NgibTIrIbSLSRUTqBTuulDqglFqglHoQ2Ovs7gTcBswADgGXumivJQxpaWme0DSla8pWE1i/2nhFqnn00fDOO7qQOUBpqX78/eGH1dONBhsr73wH4j1WpnS9ZGttUFnP5GPAF8AeEflQRO4FUsOdoJT6j1LqKaXUQKVUc6C9S7ZaKsFXGyrWNU3pmrLVBNavNl7RaDZsCB98AG3b6tfFxXD55fDll9XTjRQbK+98B+I9VqZ0vWRrbVBZMvknYDqwB+iFfpzdFEBElojIEyJymYg0CSWglPreJVstFoslbmneXPdGHn+8fr1/P/z61/Dtt7Vrl8VisVQ2AecZpdRvlFLHAW2AkejEEiALuBV4G9hOWcmg34rI8eZMtoQiMzPTE5qmdE3ZagLrVxuvqmi2bq0TyqZN9etdu6B3b3AWu6mybmXYWHnnOxDvsTKl6yVbawPRdSijOEFkPdAaaAH0AM4HsoEzKzTdiC56vkAp9VL1Ta1bpKamqv3797uqWVxcTFKSuxWaTGia0jVla6dOnVi6dKmrmtavZnRNxApiz6//+Q/07AmFhfr1SSfBZ59By5axZ2so4iVWNa1r74Pe8quXvlsiskwp1SnYsahmcweilNqulHpTKfVHpdSv0L2TAGOAz4FjgWHAuKroi8gjIjJPRH4SkV9EZKeIfC0i94Z6rC4i3UTkPaftLyLyjVOmKOgEIuecviIyX0T2iMg+EflKREZUYtsIEVnstN/jnN+3KtfpJhGtnxkDmqZ0TdlqAutXG6/qaJ59NsyaBcnJ+vX69dCnD+zcGXu21jReun4v2WoC61dvxSscVU4mQ6GUukcplU35skFV4Vb0ZJ8PgaeByUAJMBr4puKjdBHpDyxE95K+DTyHLqT+FDAl2BuIyM3Au0AHYBLwIrp2Zp6IPB7inMeBPHTP7IvOeWcA7zp6FovFYpzsbJg2DRIT9euVK/UYygMHEmvXMIvFEndU5a7zFbChskZKqYPAAmerCulKqQMVd4rIGOAO4O/Ajc6+dHRidxjoqZRa6uy/G/gYGCQiQ5RSUwJ0TgQeB3YCnZRSG5z99wNLgNtEZLpS6ouAc7qhyx79F+islNrl7H8MWAY8LiKzfFo1TUpKiic0TemastUE1q82Xm5o5uTA/7N37uFRVOcf/5wAISYSkTsYEVNEESpKABEMWEHQAgWFCgqVoEH689aqtbVcvHCx2qK2VapAFJBQoYBAJQoIIlFRgVCoIEgRNYR7iBgghJDk/P6Y2c2FZLObzMnuJO/neebZzMyZ77zzfncmZ2fOnDNvHowaZY3i/cUXcOrUbYwbB/XrOxCkjXjlnnOgtntlStdNsQaF8gbtDnQCDgMFTun52E8nrBF4Pii27F572bwyyt9sr9tQavlke/mzZWxTph7wlr18TBnblKtX1hQZGXneIOpCaBIXFxfsEAQ/qa1ezZihtVWdtKY77tD63LlgR+Wb2uqVWxG/3IMpr4Atupw6jZOPubsA1fFa0iD787/Flt1sf64qo3wqkAP0UEoV/63ua5v3S5WpyjbVxpIlS1yhaUrXVKwmkLyKX05qPvAATJ1aNP/OOzBunFW1dALxyj3nQG33ypSum2INBo41rtFaZzilVRyl1O+AC4GLsCqsN2JVJJ8vVuxK+3NPGXHl22+gd8Cq7O7yY5tDSqnTQIxSKlJrnaOUigIuAU5prQ+VEer/7M92gRyfk2RlZblC05SuqVhNIHkVv5zWHD/eegHnpZes+TffhIYNYfp0UKpq2uKVe86B2u6VKV03xRoMAu4aqLpRSh0GmhdbtApI0FofKVZmD3AFcIXWem8ZGp8CPYAe2m4DqZTKA+oB9bTW+WVscwDrZZxWduWyFXAAOKC1jimjfD2sccvztNZltlZSSt0P3G//Hde5c2d/UuA3x44do2nTpiGvaUrXVKy7du2iffv2jmpKXs3omvAK3JNXreHrr3/P6dN3epe1ajWDli3nVElXvHLPOSDXQXfl1U3nVlpaWrldA/lqmxhW3rqqTJXVxapQ3g58DRwEOhdbtwervWLbcrb91F5/Q7FlefayuuVsc8Be39Keb2XPZ5RTvp69/qw/x2OizeSJEydcoWlK11SsJtqfSF7N6JpqK+SmvGZmntB33FGyDeU//lE1TfHKPeeAXAfdlVc3nVtUss3k10qpMb76aAwEpdSVSqm3gCcrs73W+ojWehnQD2iM9TKMB8+oPBeVs7ln+YlKbPNjqc9A9lGt7NixwxWapnRNxWoCyav4Zer4d+/ewT//CX36FC178EH45z8rryleueccqO1emdJ1U6zBwFdlshmQBHxjdxR+VaDiSqlIpdRdSql/AzuBkUCVhn3RWn8PfAV0UErZg4rxtf15XntFpVRd4HKsPiqLDTrmc5uWWH1cZmitc+z9nsa6W3mhvb40V9if57XBrC527tzpCk1TuqZiNYHkVfwymdf69WH5crj+emuZ1jB6NKSkVF7TLbjNKzdomkLy6i6/fOGrMnk5VmfhzYGngJ32iDKvKaUSlVLdlFKxSqmLlVJRSqlLlFIdlVKDlFLPKqXewxoVJxkYCOwABmit/+ZA3K3szwL780P789YyyvYCIoGN2ur70oOvbW4rVaYq2wiCIFQ7F14I770HHTpY8/n5MGwYfPxxcOMSBKEGUt7zb13UFvBS4AXgEFBoTwV+TJ5ya4Ch2C/7+DNh3S28qIzlYVjDNWrg02LLo4FjwFmsDsg9yyOAjXb5EaW0LgdygeNAm2LLLwb2UqqNpb2uh718L3BxseVtbJ3c4lq+JhNtJnfv3u0KTVO6pmI10f5E8mpG11RbITfn9cABrS+/vKj9ZHS01mlpVdN0AvHKXbHKddA9sQajzWSFXQNprfcDf1BKjQd+jtVmsSfWEIJltafMtCtwnwCLtfVYOlB+DvxJKfUJ8K1dUWsO9Mbq3ucwMLZYjNlKqbHAEuAjpdRCrJFtfoHVBdASYFGp4/pWKfUE8Hdgi1JqEdZLOcOAGOBFXWz0G3ubjUqpl4DHsIZ0XII1ZONwoBHwsA7S6DcAdetWaGdIaJrSNRWrCSSv4ld15bVVK/jgA7jxRjh8GLKz4dZbrTuUV15ZjkgFmqGMm70KVU1TSF7d5Zcv/O60XGtdoLV+V2v9sNa6M1bfj5cBcVh37K4Cmmitm2mth2itp1eyIgmwFngDaArcATyBdXczC3gW6KC1/qpUfMuxKpupdtmHgXNYFb8Rdq269DG9glXh3Ancg9Vtz2Gsrod+V04eHgfG2OXut7fbCQzSWr9ayeN1hHXr1rlC05SuqVhNIHkVv6ozrz/5CaxZAxdfbM0fOwa33AL791deM1Rxu1ehqGkKyau7/PJFpavE2mp/uN+eHEVrvQN4qBLbfYp1VzOQbd4F3g1wm7nA3EC2EQRBCCY//anVhrJPH8jJsSqSt9wCqanQrFmwoxMEwc04OZyiEGTatXN+8B0TmqZ0TcVqAsmr+BWMvHbvbr3lXa+eNf/119Yj7x9/LHeTCjVDjZriVShpmkLy6i6/fBHyI+DUVKKiovTp01XqJek8Tp8+TVRUVMhrmtI1FWuXLl3YsmWLo5qSVzO6JryCmpfXJUtg+HAoLLTme/WCVavgggsqrxko4pW7YpXroHtiNXVuKaXKHQFH7kzWIBYsWOAKTVO6pmI1geRV/ApmXocNg1mziuZTU+HOO+Hcucprhgo1zatQ0DSF5NVdfvlCKpOCIAi1kPvug+nTi+ZXroSEhKK7lYIgCP4ilckaRHR0tCs0TemaitUEklfxKxTy+vjjMH580fw//wmPPGL1SFlZzWBTU70KpqYpJK/u8ssX0mYySJhoMymYwVT7E8F5xKvA0doau/u114qWTZoEkyeb3a945S7EL/cgbSaFKrFw4UJXaJrSNRWrCSSv4leo5FUpePVVuOuuomVTpsDLL1deM5jUZK+CpWkKyau7/PKFVCZrENnZ2a7QNKVrKlYTSF7Fr1DKa1gYzJsHPy/WS+9jj8GcOZXXDBY13atgaJpC8uouv3wRUGVSKfWUUuqxAMo/opR6KvCwBEEQhOqkXj1YvNgadtFDYiIsWxa8mARBcAcBtZlUShUCh7XWrfws/y3QWmtd1hjetRKl1CBgUFRU1NiXXnoJgG7dutG0aVNSUlIAaN26Nf369SMpKQmA8PBwEhISWL58OUePHgVg6NCh7N27l+3btwPQo0cP6tatS2pqKgCxsbH06tWLuXPnAhAZGcmoUaNYsmQJWVlZAAwfPpwdO3awc+dOAHr37k3dunW9wzu1a9eODh06sMz+bxIdHc2IESNYuHCh99fUyJEj2bx5M3v27AGgT58+5Ofns2HDBgA6dOhAx44dWbTIGhq9UaNGDBs2jHnz5nH27FkAEhISSE1NZd++fQD079+fkydPsnHjRgA6depE27ZtWbp0KQDNmjVjyJAhzJ07l7y8PAASExN57733OHjwIAADBgzg2LFjbNq0CYC4uDhiYmJYsWIFAK1atWLgwIEkJSVRWFhIWFgYiYmJrFy50qsxePBgMjIySE5Opn379o751KBBA95//33CwsIc86lr164sWLCAwsJCGjZs6JhPycnJnDp1irCwMMd8WrNmDenp6RQWFjJo0CDHfEpLS2PXrl2MHj3aMZ9Wr14NwKWXXkqfPn0c8wkgKiqKkSNHOuZTTk4OAL/85S9JS0urtE85OeHMmzeabdsUAHXrFpCUdJhOnZzzCeC9995jxowZjvoUGxtLXFwcixcvdsyn6OhoBg0axLvvvuuoTwkJCaxbt4799piWVT2fwLruZWRkePPjhE+e69706dNp3769Yz716tWLN998k7CwMMd88lz3Tpw4QVhYmGM+paamsnfvXsLCwhzzyXPdKywspGvXro75lJKSwq5du+jfv79jPnmue+PGjSu3zSRaa78noBA4GED5b4GCQPZRW6bIyEjtNOvXr3eFpildU7HGxcU5ril5NaNrwiuta19ejxzRul07ra3Xc7SOiMjXn39e9diKI165K1a5DjqvaUrX1LkFbNHl1GlMt5lsAuQY3odg4/n1FeqapnRNxWoCyav4Fcp5bdYM1qyBmBhrPje3DrfdBjt2VFnaOLXNq+rQNIXk1V1++aKuCVGl1EXAGCAK2G5iH4K7OH78OMuWLePQoUO0bNmSU6dOBTskQRB8cNll8MEHEB8PmZnwww/Qrx98+ilcfnmwoxMEIZTwWZlUSj0NlH6BprlSqsBPfQ3UjLGCXECfPn1CTlNrzbRp05g2bRq5ubne5fXr1ycnJ4cJEyaglKpqmICZ4zeFqVhD8TtQ3bomqK15veoqa8zu3r0LOX06jEOHoG9f+OQTaNnSsd04Sm31yqSmKSSv7vLLF/485lbFJl1q3td0CJgCvOh41EKZ5Ofnh5zmtGnTmDRpUomKJMDZs2eZNGkS06ZNq5J+cUwcvylMxRqK34Hq1jVBbc5rXBy89loG9etb8/v2WXco7fckQo7a7JUpTVNIXt3lly8qqkz+FbjcnmKxKonHii0ra7oMuFhrHaO1fsZutClUA5431EJF8/jx4xVWFqdNm8bx48crvY/imDh+U5iKNdS+A8HQNUFtz+uZM6tYvBjq2P1y7NgBAwZAKA7iVdu9qu3nlSldN8UaDHxWJrXWP2qtv7en74BU4ONiy8qa9mutf6yW6IWQZtmyZefdkSxNbm6ut+shQRBCl0GDwO4hBIDPP4fbbwe7hy9BEGoxAb3NrbW+SWs9zFQwQtXo0KFDSGkeOnTIr3LfffddpfdRHBPHbwpTsYbadyAYuiao7Xn1aI4aBa+8UrT8gw9g5Ego8LcVfTUgXtXu88qUrptiDQYynGINomPHjiGl2dLPFvrTp0/n4Ycf9rvyWR4mjt8UpmINte9AMHRNUNvzWlzzoYdg8uSidUuXwrhxVo+UoYB4VbvPK1O6boo1GFRmOMWAJ1PBCyXx9OIfKpq33347ERERFZY7e/YsM2fOrPJb3SaO3xSmYg2170AwdE1Q2/NaWnPiRPjtb4vm33gDfv/70KhQile1+7wypeumWINBoP1MPoP1Rre/eN4An1xRQaHm0bhxYyZMmMCkSZPKLdOkSRMyMzMZNmwYLVq0KLHu8OHDhIWF0axZM9OhCoIQAErBiy/CiRNF7SinT4dGjeCPfwxmZIIgBINAK5Nv4bsyeREQB1wKZAHvVjIuoRI0atQo5DQnTJgAcF4/k/Xq1eOpp55i/PjxrF+/nubNm5+37Z/+9Cdef/117rzzTh588EGuv/56n3cvTRy/KUzFGorfgerWNUFtz2tZmmFhMHu2VaFcvtxaNn48XHwx/PrXjofgN+JV7T6vTOm6KdZgoEz03KOUGgXMAhZorcc6voMaQFRUlD4div1qGKL0CDi33347jRs3Lrf8qVOnuOSSS8jOzvYu69y5Mw899BAjRozgggsuqI6wAejSpQtbtmyptv0JlUe8qn5yc61ugj780JpXCv75Txgxwvd24pW7EL/cgymvlFJpWusuZa0z8gKO1joZeBS4Vyk12sQ+hPNJTk4OWc3GjRuTmJjIpEmTSExM5P333/dZ/tChQ1x99dUllm3dupV7772XmJgYnnjiCfbt22ck1urAVKyh/B2oLl0T1Pa8+tKMiLDuTHbrZs1rDb/6Fbz3nuNh+IV4VbvPK1O6boo1GJh8m/stoAD4P4P7EIqRk5PjCk1/dK+44go+++wztmzZwpgxY0q8yJOVlcX06dNp27YtAwcO5P3330drbSxWEwQrr6GiaVLXBLU9rxVpNmhgVR49v//y82HoUPj4Y8dDqRDxqnafV6Z03RRrMDBWmdRanwFygKsrKisI5REXF8ebb75JRkYGf/nLX7j88su967TWpKSk+HzBRxCE6qFxY1izBtq0seZzc2HgQPjPf4IaliAI1YCRNpMASqk2wD4gW2vd0MhOXIyJNpN5eXmEh4eHvGZVdAsKCli1ahWvvvoqq1atAmDOnDkkJCSU0Pzxxx+56KKLHInVRPuTUMtrdWua0jXVVqi25zUQzb174cYb4cgRa75pU/jkE2jXrmQ58cpdscp10D2xBqPNZKBvc/u7w+bAHKw3v6XFbjGUUoOAQVFRUcyaNQuAbt260bRpU1JSUgBo3bo1/fr1IykpCYDw8HASEhJYvnw5R48eBWDo0KHs3buX7du3A9CjRw++/vpr7zjXsbGx9OrVi7l2vx2RkZGMGjWKJUuWkJWVBcDw4cPZsWMHO3fuBKB3797UrVuXdevWAdCuXTvOnDnD/v37AYiOjmbEiBEsXLjQ+2LMyJEj2bx5M3v27AGgT58+5Ofne8cb7dChAx07dvT2pdWoUSOGDRvGa6+95n2JJiEhgdTUVG8byP79+3Py5Ek2btwIQKdOnWjbti1Lly4FoFmzZrz//vu88MILfPTRR5w6dYrCwkLvsWqtmT59OlFRUXTp0oXOnTtz/fXXExMTw4oVKwBo1aoVAwcOJCkpicLCQsLCwkhMTGTlypUcPHgQgMGDB5ORkUF8fDyzZs1yzKcGDRqwePFioqOjHfOpa9euLFiwgOzsbGJiYhzzKTk5mcOHDxMdHV0pn4YMGcLcuXPJy8sDIDExkTVr1pCenk52djZ33XUXx44dY9OmTYB1J7qyPqWlpREfH8+2bdsc82n16tUAhIWFcc899zjmE1j9qz788MOO+eR5XHbZZZdRp04dx3wCaNq0KZdffrnfPv36103429/u4MQJOHYMbrjhJB98kIvW6aSlpQEQExPDgQMHHPUpNjaWgoICvv/+e8d8io6O9nZh5qRPCQkJvPXWWxQWFjrm04ABA9iwYQOnTp3yy6eKzico+v/kuQ465VOvXr34+9//TnR0tGM+ea57GRkZREdHO+ZTamoq27ZtIzo62jGfPNe97OxsfvaznznmU0pKCvHx8axatcoxn+YWH0e1PLTWfk/AmxVM/8Qav/sMVnvJc8DPAtlHbZkiIyO108ycOdMVmqZ0PZpr167VWD9kNKCbN2+uJ06cqPfv318p3bi4OCfD1Fq7M69u0DXhldaS18pofvqp1pGRWluv5Gh91VVaHz1atF68clesch10T6ymzi1giy6nThNom8kEYLT9WdY0ArgRqA8cAn6ptV4f4D4EoUrs2LGDevXqeeePHDnC1KlTadOmDcOGDWP9+vWeH0eCIBiiRw945x3wnIq7d8Ntt0Gx3r4EQagplFfLLGsCnq5gmgA8CPQC6gSiXdsmE3cmv/vuO1domtItrnno0CE9ZcoUfckll5S4S+mZrr76aj1jxgydnZ1doa6JX3luzWuo65r6RV7b81oVzcWLtQ4LK7pD2bu31jk54pUpXVOxynXQPbEG485kQG0mtdbPOlKDFYxw8uRJV2ia0i2u2aJFCyZOnMgf/vAH/v3vf/Pqq6/y0Ucfedd/9dVXPPjggxw6dIgpU6Y4HksgsYa6rptiNUVtz2tVNIcNg5kzYaw9fMWGDTB8OGhdx6HoShJqx1/durX9vDKl66ZYg4HJfiaFasbTIDjUNU3plqVZr149hg4dyvr169mxYwcPPPAAF154IWC9VDF27PkDNHkaxJvE7XkNZV0T1Pa8VlUzMRH+/Oei+Xffhe++exoTp1ooHn916tb288qUrptiDQZVrkwqpeoqpZrak5G3wwXBCTp06MCMGTM4cOAAr7zyCr/97W9p3bp1iTLfffcdsbGxPPfcc9433gRBqDpPPAFPPlk0n5X1c37zG+vhtyAI7qZSlUml1EVKqfFKqa1YHZMftqccpdRWpdSTSilnOvkT/KZTp06u0DSl669mdHQ0Dz30EC+++OJ561577TW+//57JkyYwKWXXsqoUaM4deqU4y/s1MS8hoquCWp7Xp3SfO45GDeuaP7VV+GZZxyR9hLKx18durX9vDKl66ZYg0HAlUml1I3ALmAKcC1WX5XKnuray6YBu5RSPZ0KVKiYtm3bukLTlG5VNbXWrFy50jufl5fHggUL+Prrr+nSpQtvvvkmZ86cqWqYQO3Ka3XrmqC259UpTaVgxgyrzaSHyZPhr391RB4I7eOvDt3afl6Z0nVTrMEgoMqkUuoKYBXQAsgCngP6Ax3tqZ+9LNMus8reRqgGPJ2mhrqmKd2qaiql2Lp1K8nJyXTv3r3Euq1bt3LfffcRExPDE0884e0QurLUprxWt64JantendSsUwfeeguioz/1Lnv0UZg3zxn9UD9+07q1/bwypeumWINBoHcmnwUigTTgKq31RK31B1rrr+xprdZ6ItDeLhOF1WWQILiC+vXrM3LkSD777DPS0tK49957UUp512dlZTF9+nTatm3Lf//73yBGKgjuJTwcfvKT39Oz2LOr++6D5ctLlisstCqZ1fBOnCAIVSDQymQfrH767tNaHy+vkNY6C7jPnu1bydiEAGnWrJkrNE3pOq3ZuXNn3njjDa655hr+8pe/cPnll3vXdejQgZ/+9KeV1q7NeTWta4LanlcTmmFhZ1m5EjxNxgoKrMff9mh5FBZab4EnJFif/lYo3XL8pnRr+3llStdNsQYDFciLBUqpHOCs1vpiP8ufAOppraMqF17NJSoqSp8+fTrYYQh+0KVLF7Zs2UJBQQGrVq1ixowZDBkyhPvvv79Eufnz57NhwwYefPBBrrvuuiBFW7vxeCWEPh6vjhyBG2+EvXut5VFRsHYtzJoFc+YUlR8zBpKSIEw6tAsKcm65B1NeKaXStNZdyloX6Gn5PRChlKqwt1m7TH0gPcB9CJXEr8HYQ0DTlK6pWD3UqVOHAQMG8N57753XP6XWmhdffJE33niDzp0707NnT95++23y8vKqNVY35dW0X05S2/Nq0qvmza3K4yWXWPOnT0Pv3iUrkmDN+3OH0k3H76ZYTSB5dZdfvgi0MvkvIBwYXlFBu0x9YGGgQQmVo7yKS6hpmtI1FWtZFG9HCZCWlsb27du98xs3buTuu++mdevWTJo0iYyMjBLlJa/V61dVqe15Ne3VZZfBBx9Ao0ae/ZVdzp8KpZuO302xmkDy6i6/fBFoZfI5YBMwUyk1orxCSqnhwEzgc+BPlQ9PENxBXFwcn3zyCSNGjKBu3aK++48cOcLUqVNp06YNw4YNY/369Y73WSkINYErr6TECznl4e8dSkEQqo9A20w+hXW38QEgGuux9wbggF2kFdAbaAP8CLwGnC1LS2s9ubJB1wRMtJksLCwkzOEGRSY0TemaijXQ9ieHDx9m9uzZzJw5kwMHDpy3vmfPnmzYsIE6dZwfm9hNeTWha6qtUG3Pq2mvPC/blH607Yvy2lC65fhN6YbKddAfJK/uug462WbyGeBJ4CKsTsrbAKOBP9pTAnC5va6hXfbpUtMzSHdBRlizZo0rNE3pmoo1UFq0aMGkSZP49ttvWbx4MTfddFOJ9ddffz0ffPCBkX27Ka+h4pc/1Pa8mvZq/vzAKpJglZ8///zlbjp+N8VqAsmru/zyRaBjab+F1TWQUEmUUoOAQVFRUcyaNQuAbt260bRpU1JSUgBo3bo1/fr1IykpCYDw8HASEhJYvny5d7zooUOHsnfvXm87vR49evC///2P9HTrfafY2Fh69erlbdwbGRnJqFGjWLJkCVlZWQAMHz6cHTt2sHPnTgB69+5N3bp1WWf3zdGuXTu+/fZbb5zR0dGMGDGChQsXkp2dDcDIkSPZvHkze/bsAaBPnz7k5+ezYcMGwOpCp2PHjixatAiARo0aMWzYMLZt2+aNNSEhgdTUVG9H4P379+fkyZNs3LgRsIabatu2rbdz12bNmjFkyBDmzp3rbW+SmJjIjh07vJoDBgzg2LFjbNq0CbAeQ8fExLBixQoAWrVqxcCBA0lKSvL+MkxMTGTlypUcPHgQgMGDB5ORkUF8fDyzZs2qtE+XXnop77//Ph999BFbtmzhF7/4BZ9++inp6elen+68805atmxJ9+7dGT16dMA+de3alQULFpCZmcmJEycc8yk5OZn09HTS09Md82nNmjWkp6eTmZnJT3/6U8d8SktLIz4+nm3btjlyPjVo0IDVq1cDkJ2dzc0331zl88njE1h9lt56662O+ZSTkwNYdzrWrl3rmE9gtevatm2bYz4BxMTEcODAAVJSUigshFtu+TkffBCDv/To8TXXXXeO778v8ik2NpbvvvvOe81ywqfo6Giys7Md9ykhIaHENcsJnwYMGMDu3bu980745Lnuea6DTpxPnuve1q1bSU9Pd8wnz3Vv3759pKenO+ZTamqqN1anfPJc9zIzM2natKljPqWkpBAfH8+qVasc88mvl4S01jIFYYqMjNROM3PmTFdomtI1FWtcXJxjWjk5OVrrkrFmZGToOnXqaEBfeumleurUqfrIkSOV0ndTXk3oOulVcWp7XqvDq4ICrceM0RoqnsaMscpXV6y13SutzZxbkld3XQeBLbqcOk3QK1W1dTJRmczIyHCFpildU7GaODGLx/rUU09prDv+3ik8PFyPHDlSb9y4URcWFlZK10Ssoa5r6iJa2/NaXV75U6H81a/Kr0iairW2e6W1+etgqOu6KdZgVCal+9caxLFjx1yhaUrXVKwmKB7rfffdx/jx42natKl3WV5eHgsWLKBHjx506dKFN998kzNnzgSkayJWN+iaoLbntbq8CguzXqoZM6b8MlFRvjsud9PxuylWE0he3eWXLypdmVRK3aSU+odS6nOl1Df29Lm97CbnQhT8xdOeKdQ1TemaitUExWNt3bo106ZNY//+/cyfP5/rr7++RNmtW7dy3333cckll1TYdsVNeXWrX6GsaUq3Or2qqEL5+uuweHH527vp+N0Uqwkkr+7yyxcBVyaVUk2UUquBdcA4oBvWG9yX23+PA9YppVYppZo4Gawg1GTq16/PqFGj+Pzzz9myZQtjxowhIiLCu/6HH36gZcuWQYxQEKqH0hXKhAQYOrRofWIi2O8XCYIQAgRUmVRKhQMfAH2xuv/5HJgG/J89TbOXKeAWYI29jVANxMXFuULTlK6pWE1QUaxxcXG8+eabZGRk8Oc//5nLL7+ctm3bcsstt5Qod/bsWf7+97/zww8/+KVrItZQ0zVBbc9rMLzyVCjnzoU33rD+vvxya112NowYUfZIOW46fjfFagLJq7v88kWgdyYfAjoBPwD9tdY9tdaTtNYz7WmS1roncCtwwi77oKMRC+USE+N/txrB1DSlaypWE/gba+PGjXniiSf43//+xwcffHBe57aLFy/mN7/5DZdccgljx47lxIkTQYs1VHRN4Kbvq5tirYiwMBg92vps2BAWLYJ69ax1mzfDH/94/jZuOn43xWoCyau7/PJFoJXJ4Vhvm96vtS6312Wt9Rrgfqw7lOUOuyg4i6ePqlDXNKVrKlYTBBprnTp1aNOmzXnLZ8yYAcCZM2dISkqib9++9OzZk7ffftuxMV/d9B0whZu+r26KNVC6doXnny+af+klWLmyZBk3Hb+bYjWB5NVdfvki0MrklUAusMyPssvsslcFGpQgCBWjtea+++6jU6dOJZZv3LiRu+++m9atWzNp0iQyMjKCFKEgOM+jj8LAgUXzo0eDfMUFIbgEWpmsB5yz+xvyida6EDhH4KPsCJWkVatWrtA0pWsqVhM4EatSisTERP7zn//wySefcNddd5UY7/vIkSNMnTqVNm3aMGzYMPbv3x+0WKtT1wRu+r66KdbKoJTVjtLzdDArC+66C/LzrXk3Hb+bYjWB5NVdfvlC+VEvLCqs1C6gHdBVa721grJxwGbga611+ypFWQOJiorSp0+fDnYYgh906dKFLVu2BDsMvzh8+DCzZ89m5syZHDhwwLv8wgsv5MCBA0RHRwcxOvO4yavaTlW9+vhjuOkmKCy05idMgKlTnYlNOB85t9yDKa+UUmla6y5lrQv0zuR7WO0g31BKNS2vkFKqOfAGVvvKlAD3IVQSzxicoa5pStdUrCYwFevKlSuZNGkS3377LYsXL+amm24C4J577jmvIrl37152795doaabvgOmcNP31U2xVoX4eJg8uWj+uedg7Vp3Hb+bYjWB5NVdfvki0MrkC0AWcA2wWyn1vFLqVqXUT5VSXZVSQ5VSrwLf2GV+AP7sbMhCeRR6fqKHuKYpXVOxmsB0XuvVq8ewYcNYv349X375Jb///e/PKzt58mTat29P3759WbZsGfme54TVHKsbcNP31U2xVpUnn4S+fa2/tYZRo+CHH+o7vh/xygySV3f55YuAKpNa66PAz4EjwMXAE1h3Hrdh9S/5L6z+JiOBQ8Bt9jZCNVC625hQ1TSlaypWE1RnXjt27Mhll11WYtmxY8dYtGgRAOvWreOOO+4gNjaW5557jqNHS56ybvoOmMJN31c3xVpV6tSB+fOhWTNr/sgRmDPnZpz+/yxemUHy6i6/fBFQm0nvRko1BB4GhgIdKaqUFgI7gCXAq1rrE45EWQORNpPuoSa2Fdq3bx+/+93vWLFixXm/jMPDw7nzzjt58MEHuf7661FKBSnKwKmJXtVUnPRq7Vro18+6OwkwbRqMH++ItGAj55Z7cEObSQC01ie01lO01tcCFwAt7ekCrfW1WuupUpGsflaW7nAtRDVN6ZqK1QTBzmtsbCzvvPMO3377LePHj6dp06Im0Hl5eSQnJ3PDDTfQpUsXfvvb31KZH51OxRoKuOn76qZYnaJv35KVx0mTrBd0nEK8MoPk1V1++aLK91e11ue01kfs6ZwTQQmV4+DBg67QNKVrKlYThEpeW7duzbRp09i/fz/z58+ne/fuJdZv3bqVNWvWGLk7Wdv9CpXvQLA0neaZZ+DGG62/Cwvh7rvh+HFntMUrM0he3eWXL6QPyGpGKTUIGBQVFcWsWbMA6NatG02bNiUlxXrxvXXr1vTr18/7lld4eDgJCQksX77c255t6NCh7N27l+3btwPQo0cPzp4969WMjY2lV69ezJ07F4DIyEhGjRrFkiVLyMrKAmD48OHs2LGDnTt3AtC7d2/q1q3LunXrAGjXrh0FBQVezejoaEaMGMHChQvJzs4GYOTIkWzevJk9e/YA0KdPH/Lz89mwYQMAHTp0oGPHjt72eY0aNWLYsGFkZWV5dRMSEkhNTWXfvn0A9O/fn5MnT7Jx40YAOnXqRNu2bVm6dCkAzZo1Y8iQIcydO9c7yktiYiLZ2dlezQEDBnDs2DE2bdoEWOOfxsTEeEcbaNWqFQMHDiQpKYnCwkLCwsJITExk5cqV3pN78ODBZGRkEB8fz6xZsxzzqUGDBmRmZjJr1izHfOratSsLFiwgMzOThQsXVsqnQYMGkZOTw80338xnn33GZ599Rm5uLp07d2bWrFklfMrMzOSuu+7i9OnTAfu0Zs0a0tPTyczM5MCBA475lJaWRnx8PNu2bXPMp9WrVwOQnZ1NXl6eYz4B3u2cOJ+Sk5PJyckBrAb9a9eurfL55PEJrLvV27Ztc8wnsIaRO3DggKM+/d//tec//+nK6dMRZGRA374ZbN0aw9KllffJ0wuC0z4lJCSUuGY54dOAAQPIycnxajrhk+e657kOOuGT57rnuQ46cT4V///k0XXKp9TUVK+mUz55rnuZmZmkpaU55lNKSgrx8fGsWrXKMZ881z1fVLbNZBjQA6u95MVYnZmXi9Z6sq/1tRETbSaPHDlC8+bNQ17TlK6pWE20P3FDXo8fP84///lPhg4dWqJj3XPnztGmTRsiIyP5v//7P8aMGcPFF18c1Fg9mGor5Kbvq1tiNeXV/Pk/cM89Rd/Hl16yRs2pCrXdK6i910GTmqZ0XdFmUil1O5AObABmAFOBp8uZnrE/hWrAxLB5pobic1OsJnBDXhs3bszDDz/MoUOHSixfsWIFBw8eZO/evTz++ONccskljB07lm3btgUtVtO46fvqplhNcPXV+3jssaL5P/wBNm+umqZ4ZQbJq7v88kVAlUmlVF9gMdAKa6jET7G6A3qrnGme/SlUA57b3aGuaUrXVKwmcHNejx8/TsOGDb3zZ86cISkpieuuu46ePXvy9ttvex/vBKIbyrjp++qmWE2QlpbGn/4EXbta8+fOwfDh8OOPVdM0gXgleXWTX74I9M7keHubDcDlWuteWuu7tNZjfE3Ohy0IQrAYN24cBw4cYPbs2Vx77bUl1m3cuJG7776b1q1bM2nSpBrzq1twF+HhsHAheAZ9+vZbSEws6jpIEARnCbQyGYc1RGKC1vpQRYWF6qVbt26u0DSlaypWE7g9r5GRkSQmJrJ161Y++eQT7rrrLurVK2o6feTIEaZOncrChQurNVZTuOn76qZYTeCJNTYWio9Ut2QJzJxZNU2nEa8kr27yyxeBViYVkK21/t5EMELVKN5XYChrmtI1FasJakpelVL07NmTf/7zn6SnpzN58mQuueQSACIiIrj33nvP28bzlmRt96umfAdCjeKx/vKX8OtfF6377W/hv/+tmqaTiFeSVzf55YtAK5O7gCilVISJYISq4eliI9Q1TemaitUENTGvLVq0YNKkSXz77bcsWbKEqVOn0qhRoxJltm/fTosWLXj44Ye9XVa4ATd9X90UqwlKx/rSS3DNNdbfZ8/CnXfCqVNV03QK8Ury6ia/fBFoZfIfWH1T/spALIIg1ADq1avH0KFDefzxx89bN2PGDE6ePMmrr77KM888Q9++fVm2bBn5+flBiFSoDVxwASxaBFFR1vzXX8ODDwY3JkGoaQRUmdRazwPeAP6qlBphJiShsrRu3doVmqZ0TcVqgtqY18LCQrZu3Vpi2bp167jjjjuIjY3lueee83amG2qEcl6rQ9ft59ZVV8E//lE0/9ZbMG9e1TSdQLySvLrJL1+U22m5UupNH9sNAS7C6m9yC3DSR1mttb6vsgHWVEx0Wu7pKT/UNU3pmorVRAewtTWvWms+/PBDZsyYwYoVKygsLCyxPjw8nDvvvJMHH3yQ66+/PuBhHE111hvqeTWta0IzGF4lJBRVIiMjIS3NqmhWRbMquMUrkOugm2INtU7LE4DR9mfpqSHWyziXAUPLKVN8EqoBE23QTLVrc1OsJqiteVVK0adPH9555x2mTZvG+PHjSzRAz8vLIzk5mRtuuIGvv/7asf1WlVDPq2ndmnJuvfpqUeUxJ8dqP3nmTNU0q4J4JXl1k1++8DU297PVFoUgCLWORo0a8eSTT/LUU0+xePFiZsyYweeffw5AfHw8V5W6ZaS1DvhOpSAU58ILrfaT3bpZL+N8+SU89hi89lqwIxMEd1NuZVJrHbTKpFKqMXA7MAD4KXAJkAd8CcwB5mitC8vYrgcwEegOXAD8D3gTeEVrXVDOvgYCvwOuA+oAO4F/2O1Dy4tvNPAgcDVQAPwHmK61XlmZ43WK8PBwV2ia0jUVqwkkr0W69evXZ9SoUYwaNYq0tDRmzJjBwIEDzyv/0ksvsX79eh588EH69+9v5JFTRbGGuqYp3Zp0bl1zDfztb0VdBr3+OvzsZ9ZdyspqVhbxSvLqJr98UW6byWCilPo18BpwCFiP1TazOXAHVlvNpcAvdbHglVKD7eW5wCIgCxgEXAks0Vr/soz9PAS8Ahy3t8kDhgExwIta69+Vsc104HEgA1gChAMjgEbAw1rrV/05RhNtJgUzmGp/IvhPQUEBV1xxBd9++y0AP/nJT3jggQcYM2YMF198sbeceOUegumV1jBiBPzrX9Z8dDT85z9WR+dC2ci55R5Crc1kMNkD/AKI0VqP1Fr/UWt9L3AVsB+rneYdnsJKqWhgNtZdwpu01vdprZ8ArgU+A4aVfvtcKdUGmI5V6eyitX5Qa/0ocA3wDfC4UuqGUtv0wKpIfgNco7V+VGv9INbIQFnAdFs3KCxfvtwVmqZ0TcVqAslrYLqbN2/2ViQBvvnmGx5//HEuueQSxo4dy7Zt25wPsBg1Na/B1DSFP7EqBbNmFVUes7Ot8bvLG1JevDKD5NVdfvkioMqkUqpXgNP1SqkrlVK+2maeh9b6Q631u6UfZWutDwOv27M3FVs1DGgKLNRabylWPhfrsTfA/5Xazb1AfeBVrfV3xbb5AXjOnv11qW0889Pscp5tvgNm2HpBG4vcRLcqprpqcVOsJpC8BqbbvXt3/ve///HYY4/RsGFD7/IzZ86QlJTEddddR8+ePcnKyiKvvBpBNcUaTE1TujXx3LroImv8bs8ooFu2wJNPVk0zUMQryaub/PJFoHcmP8J67OzvtBH4CjiplFqllLrFgZjP2Z/Fezm+2f5cVUb5VCAH6KGUqu/nNu+XKlOVbQRBcIC2bdvy4osvcuDAAWbPns21115bYv3GjRv59ttv6dmzZ3ACFFxH167w5z8Xzb/8Mrz7bvDiEQTXorX2ewK+A74FTgGF9nQWOGhPZ4stP2WXzyq2rAB4JpB9ltp/XayXcDTQv9jyzfayuHK222Gvb19s2TF7WeNytjllr4+056Ps+ZPllG9irz/iz7FERkZqp8nMzHSFpildU7HGxcU5ril5rbpuYWGh/uSTT/Rdd92l69Wrp+3zT0+ZMsWhCIuoTXmtLk0T55XWgcdaWKj1oEFaWy0ptW7USOv09Kpp+otbvNJaroNuitXUuQVs0eXUaQJ9/NxGKfUI8BfgPeAF4HOt9TkApVQ94HrgD8AtwJ+11v9QSsXay8YCk5RS67XWGwLZt83zQEfgPa316mLLL7I/fyxnO8/yhgFuE2WXy6nkPkqglLofuN/+my5dymzHWmlOnz5NlGfMsBDWNKVrKtZdu3a5witTum6ItX379mRmZnLo0CEWL158Xjuk9PR0IiIiaNy4MXXq1AlqrCY1Tema0DRxXkHlYs3Pv4h69RZw7lwLsrKgffttXHnlOJQqqLSmqViDoQlyHXRTrKbOLZ+UV8ssa8LqqqcAmOVH2VlYj6L7FVv2D6w7lIsC2a+97SNYdx52AY1Krdtjr2tbzraf2utvKLYsz15Wt5xtDtjrW9rzrez5jHLK17PXn/XneEzcmZw5c6YrNE3pmorVxK88yasZ3c6dO5+37KuvvvLetWzQoIF+6KGH9FdffVXm9pmZmXr27Nl68uTJevbs2d67BrU9ryY0Td09qWysH3+sdZ06RXcox4+vumZFuMUrreU66KZYg3FnMtA2k4/bF+XxfpQdjzVKzhPFlnlap/QIZKd2Fz5/w2p/+TOtdVapIp67ghdRNp7lJyqxzY+lPgPZhyAI1UhZnZrPmjXL+/fJkyd59dVXufrqq+nTpw/Lli0jPz8frTVTp04lJiaGsWPH8tRTTzF27FhiYmKYOnWq5wejUIO58UaYPLlo/k9/gg8+CF48guAmAq1MdgJ+1FpnVlTQLnMC6Fxs2XdY43g3LXur81FK/RarL8gdWBXJw2UU84y71q6M7esCl2PdJd3n5zYtsR5xZ2itc+zYT2PdrbzQXl+aK+zPPRUckjF69Aiojh40TVO6pmI1geS1+vx69tlneeWVV84bUefDDz/kjjvuIDY2ln79+jFp0iRyc3NLlMnNzWXSpEns2LHD8bjclNfacm49+STcYr8mqjWMGgWHD4tXppC8ussvXwRamawPRCulGlRU0C4TjdWpd+l95vizM6XUH4CXgW1YFcny3qH/0P68tYx1vYBIYKPW+qyf29xWqkxVtqk2GjSo0JaQ0DSlaypWE0heq8+v6OhoHnroIb766ivWrl3L7bffXmL0nP3797N27VqfGrNnz+b48eOOxuWmvNaWcyssDObPh+bNrfmjR60KZWSkeGUCOQfc5ZcvAq1M7rC3+b0fZZ+gaHhCAJRSjbDu+B2paGOl1CSsF27SgD4V3A1dAmQCI5RS3lanSqkIYKo9W3r01TlYb58/VLyjcaXUxRQ9xn+91Dae+Ql2Oc82bbCGVzxr6waF1atXV1woBDRN6ZqK1QSS1+r3SylFnz59eOedd/j2228ZP348TZv695Dk7NmzLFu2zNF43JTX2nRuNW8OCxZYHZsDrFsHjz1mpi9A8UrOATf55YtAK5OvYbWDHK+Ues1+S7sESqnLlVIzgAlY7SuLV+J+Zn/+x9dO7LGvJ2O97PMx8IhS6plSU4KnvNY6G+tN8TrAR0qpJKXUn7HuaN6AVdlcVHwfWutvsSq8jYAtSqkZSqmXgf8CP8EaTvGzUttsBF6y1/9XKfWyfaxbbJ3f6WIdoAuCEJq0bt2aadOmsX//foYOHerXNocOHTIclRAq9OkDEyYUzf/733F8/HHw4hGEUCfQroHmKaVuBO7D6uLmfqXUYawxtAFaAi3svxXwptZ6XjGJAVjtDldUsKvL7c86wG/LKbMBmFsstuVKqd5YldihQASwF3gM+LsuowW91voVpdR3wO+Ae7Aq118BE0vFXXybx5VSX2Ldibwf6+30rcBftNYrKzguo8QaGFjWhKYpXVOxmkDyGhp+1a9fn1tvvZWlS5dWWLZZs2aO7ttNeQ0Fr/zFqViffho2bICPPwatw7jrLti2DZo0cUQeEK/kHHCXX75QlXlLUSk1BpgEtCmnyPfAFK31m5UPrWYTFRWlT58+7ahmXl4e4eGlm6iGnqYpXVOxdunShS1btlRcMAAkr2Z0K+PV8ePHiYmJOe/lm9JceeWVvPLKK9xyixMDebkrr6HilT84GWtGBlx7LXiayw4YYI2QU0anAZXCLV6BXAfdFKupc0splaa1LrMDy0AfcwOgtZ6jtY4FumA9Xv6jPY21l8VKRbL6mTt3ris0TemaitUEktfQ8atx48ZMKP5Msxy+/vpr+vXrx5AhQ/jmm2+qvF835TVUvPIHJ2ONiYF5xZ5RpaRYQy46hXg11zW6boo1GFSqMulBa71Va/2G1voFe3rDXiadsgmC4BomTJjAlClTiIiIKLE8IiKCfv36lbhzsGLFCq6++mrGjx/PqVOnqjtUoZoZMABuuWW7d/4Pf4BNm4IYkCCEIFWqTAqhRWRkpCs0TemaitUEktfQ8kspxcSJE8nIyGD27NlMnjyZ2bNnk5GRwerVq3nxxRcZPXq0t3xeXh5/+tOfuPLKK0lOTq5Up+ZuymsoeVURJmK9++6ddOtm/Z2fD8OHw4kTVdcVr+QccJNfvqhUm0mh6phoMymYwVT7E8F5THv1xRdf8Mgjj7Cp1K2p6dOn8/jjjxvbb03EbefVt9/CddfBj/ZYaMOGwb/+5Vz7yVDHbX7VZkK+zaRSqqASU74zhyFUxJIlS1yhaUrXVKwmkLy606/rr7+ezz77jLlz59KihdVxRePGjbn33nsrrek0bvoOmMDU8V9+OSQlFV8Gr5fuibgSuk5T270ypeumWINBoI+5VSUmeZReTWRllR6yPDQ1TemaitUEklf3+hUWFsbo0aPZs2cPv//973nhhRe4+OKLS5T/8ccfycvL81vTVKyhrGkKk8c/bBg88EDR8kcftboLqqquk9R2r0zpuinWYBBoRe/yCqZrsd7o3glkAYMp6jNSEAShxtCgQQNeeOEF7rvvvvPWPfLII/z0pz/l/fffD0JkgklefBE6dbL+PnvWaj8p72EJtR6tteMT1njc64CjwKUm9uH2KTIyUjvNiRMnXKFpStdUrHFxcY5rSl7N6JrwSuvAYv3888811uhfGtADBgzQe/bsqZJmILjlOxAKXlVWc/duraOitAZrGjVK68LCqus6gVwH3ZVXN51bwBZdTp3GyCNorXUe8AjQBHjaxD6E89mxY4crNE3pmorVBJLXmuvXd999R3R0tHc+JSWFDh068Pvf/57s7OxKaQaCm74DJqiO47/yypLtJZOTS/ZHWVldJ6jtXpnSdVOswSCg4RQDQWu9UymVDdxqah9uRCk1CBgUFRXFrFmzAOjWrRtNmzYlJSUFsMYN7tevH0l2a+/w8HASEhJYvnw5R48eBWDo0KHs3buX7dut/s969OjB1q1b2blzJ2AN0dSrVy9vh6iRkZGMGjWKJUuWeNtoDB8+nB07dni36d27N3Xr1mXdunUAtGvXjl27dnnXR0dHM2LECBYuXOj9pzhy5Eg2b97Mnj17AOjTpw/5+fls2LABgA4dOtCxY0cWLbKGRm/UqBHDhg3j448/9uomJCSQmprKvn37AOjfvz8nT55k48aNAHTq1Im2bdt6h7xr1qwZQ4YMYe7cud52aYmJiXz22WdezQEDBnDs2DHvW7dxcXHExMSwYoU1kmerVq0YOHAgSUlJFBYWEhYWRmJiIitXruTgwYMADB48mIyMDOLj45k1a5ZjPjVo0IANGzawc+dOx3zq2rUrCxYsIDMzk/379zvmU3JyMunp6ezcudMxn9asWUN6ejqZmZm0adPGMZ/S0tKIj49n27Ztjvm0evVqALKzs+natatfPv34449MmjSJL774gqVLl6K15ty5c/zlL39h3rx53HbbbXTv3p0TJ07Qs2dPx3zKyckBoLCwkDNnzjjmE1hdIUVFRTnmE0BMTAwHDhxw1KfY2Fj27t3rPVeqej6Bdd3Lzs5m//79JXyKidnMDTe05LPPrgTggQcK+f77JbRsecIvnxISEkpcs5zwacCAAWzevNmr6YRPnuue5zrolE+9evXyXged8slz3du3bx87d+505HzyXPc2bdrEzp07HfPJc93LzMwkIiLCMZ9SUlKIj49n1apVjvnkV8fq5d2yrOqE9ag7Dzhjah9unkw85p45c6YrNE3pmorVxCMDyasZXVOPdyob65YtW3SPHj1KPPYGdLdu3fSTTz7pcJQWbvkOhJpXldE8dUrrq64qetzdsaPWOTlV160Kch10V17ddG5R3Y+5be7GuvN50OA+hGL07t3bFZqmdE3FagLJa+3wKy4ujk8++YTk5GRatWrlXb5p0yaef/55710FJ3HTd8AE1Xn8UVFWX5OegZN27IDf/rbqulWhtntlStdNsQaDQPuZbF3B1E4pdbNS6m/AP7B+hS82ErlwHnXrOt9qwYSmKV1TsZpA8lp7/FJKMXLkSL7++mvGjx9P/fr1AejZsyedO3d2KkQvbvoOmKC6j/+nP4W//a1oftYssJ+aVkm3stR2r0zpuinWYBDonclvK5h2AR8ADwERwCZgilPBCr7xtCUJdU1TuqZiNYHktfb5deGFFzJt2jS++uorhg0bRt++fVGlhk85duyYp5lQpXHTd8AEwTj+sWOtLoKKz3/zTdV1K0Nt98qUrptiDQZOd1peiNW/5AbgASBeay1jBgqCINjExsayePHiEo+9Ac6ePcsNN9zAbbfdxu7du4MUnVAZlLLuSP7kJ9b8yZNW5fLs2eDGJQjVRUCVSa11WAVTPa11U631zVrr17XWMpRiNdKuXTtXaJrSNRWrCSSv4ldpzZdffplvvvmG1atX89Of/pTHHnuMEydOVFnXCcSrijWjo2HhQqhXz5pPS4Mnn6y6bqDUdq9M6bop1mAgQx3WILp27eoKTVO6pmI1geRV/Cqtefz4ccLCrEtyfn4+L7/8Mu3atSMpKYmCgoJK6zqBeOWfZpcu8Je/FM3/9a/w739XXTcQartXpnTdFGswkMpkDcLT31aoa5rSNRWrCSSv4ldpzb/85S+kpaXRq1cv77Jjx44xduxYunXrxqefflopXScQr/zXfOQR+MUviuYTEsDuXrBKuv5S270ypeumWINBpSuTSqkLlVJ3KqWeV0q9YU/P28sudDJIQRCE2sC1117LRx99xKJFi7j00ku9y7du3cqNN97I3XffTUZGRhAjFCpCKZgzBzz2/fAD3HUXnDsX3LgEwSQBVyaVxXjgAPA28ASQYE9P2MsOKKWeVKVfVRSMUnwIt1DWNKVrKlYTSF7Fr/I0lVLceeed7N69m6eeeooITyeGwNtvv02XLl3Izc0NiVhDkVA4/kaN4O23oU4da37jRni6jIGFQyHWYOKma4ubYg0GKtBuKJRS84BRWG9v5wJpgOencgwQh9UtkAaStdajHYu2BhEVFaVPn5YX3d1Aly5d2LJlS7DDEPygJnr1/fff88QTT7B4sdVl75/+9CeerOjNDhdQE70qzfPPwx//WDS/ejX06xe8eKpCbfCrpmDKK6VUmta6S1nrAu20/A7gV/bsn4AWWut4rfVd9hQPtACet8uMUkrdXtnAhcBYuHChKzRN6ZqK1QSSV/HLX83LLruMf/3rX6xfv54hQ4bw6KOPnlfm2LFjAesGgnhVOc3f/75k5fFXv4JDh6qu64va7pUpXTfFGgwCfcx9P9Ydx4la6wla6+zSBbTW2Vrr8cAkrLuX91c9TMEfsrPPsyMkNU3pmorVBJJX8StQzZtuuolly5Z5R9Dx8NVXX9G6dWseeeQRfvjhh5CINZiE0vGHhcFbb0GLFtb80aMwahR4Xs4PpViDgZuuLW6KNRgEWpmMAwqAv1VU0C5TAJR5S1QQBEGoGlprfvOb35Cbm8srr7zCFVdcwYYNGwLqSkgwS/PmsGCB9WIOwIcfwnPPBTcmQXCagNpMKqVygdNa68Z+lj8ORGmtIyosXMsw0Wby9OnTREVFhbymKV1TsZpofyJ5NaNrqq1QqOb15MmTDBkyhA8//LDE8muuuYa///3v9O7du0r6HsSrqms+/TRMnmz9HRYG69dDXFxoxloWch10T6wh32YSOAo0VEq1qqigUuoSoCFwrIKigkNs3rzZFZqmdE3FagLJq/jlhGaDBg1Yu3YtS5Ys4bLLLvMu/+9//8tNN93EnXfeyffff1/l/YhXVdecNAk8XYgWFlrdBX3wwbYq65amtntlStdNsQaDQCuTqfbnS350+/OS/flRgPsQKsmePXtcoWlK11SsJpC8il9OaSqlGDp0KLt27WLKlCmEh4d71y1evJirrrqKZ555hpycnErvQ7yqumbduvDPf0Jj+7newYMwadKlFBZWWboEtd0rU7puijUYBPqY+1pgC9aLNZ9gvdGdqrXOsdc3Bn4G/AHoDBQCXbXW2xyN2sUopQYBg6Kiosa+9JJV3+7WrRtNmzYlJSUFgNatW9OvXz+SkpIACA8PJyEhgeXLl3P06FEAhg4dyt69e9m+fTsAPXr0YP369d7G+bGxsfTq1Yu5c+cCEBkZyahRo1iyZAlZWVkADB8+nB07drBz504AevfuTd26dVm3bh1gjRm6a9cu6tidpUVHRzNixAgWLlzobTQ8cuRINm/e7D0h+vTpQ35+Phs2bACgQ4cOdOzYkUWLFgHQqFEjhg0bxvPPP0+jRo0ASEhIIDU1lX379gHQv39/Tp48ycaNGwHo1KkTbdu2ZenSpQA0a9aMIUOGMHfuXPLy8gBITEzkpZde8vbZNWDAAI4dO8amTZsAiIuLIyYmhhUrVgDQqlUrBg4cSFJSEoWFhYSFhZGYmMjKlSs5ePAgAIMHDyYjI4Pk5GTat2/vmE8NGjRgwYIFNGnSxDGfunbtyoIFC8jMzCQ2NtYxn5KTk0lPT6dJkyaO+bRmzRrS09PJzMxk9OjRjvmUlpbGrl27GD16tGM+rV69GrAayT/yyCOO+QSQlZXFk08+6ZhPnspiZmYma9euZf369RTnuuuu49e//nXAPgHk5eVx4403OuYTwHvvvceMGTMc9Sk2Npa9e/d6h6V0wqfo6Giys7O9n1X16YsvGvPqq7d5fRk27DNuueXLKp9PYF33Fi9eTGRkpGM+ea5706dPp3379o751KtXL6ZPn06TJk0c88lz3du3bx9NmjRx5HzyXPc2bdpEkyZNHPPJc93LzMykf//+jvmUkpLCrl276N+/v2M+ea5748aNK/cxN1rrgCast7PzsV6uKbD/Pg6cKras0F5+f6D6tWWKjIzUTrN3715XaJrSNRVrXFyc45qSVzO6JrzS2p15/fjjj/V1112nsXrg0J9//nmVNZ2kNnv1u99pDdZUt67WHmsKCrSeO9f6rCxyHXTHd8CkrqlzC9iiy6nTBDwCjtZ6FtCLosfXYcDFQCTWHUuAD4F4u6xQTeTn57tC05SuqVhNIHkVv0zn9cYbb2Tz5s3MmjWLxx57jOuvv75EuYKCAo4fPx6Qphtwg1fTpoHHjvx8GDECsrIgMdEayzsxkUo//q7tXpnSdVOswaBSY3NrrTdqrfsATYC+wF321BdoorXuq7X+zLkwBX/w3LoPdU1TuqZiNYHkVfyqjrzWqVOHsWPH8uKLL55XLikpibZt2/LKK69U+A9NvHJWMzwcFi6ECy44C8B330HnztaY3mB9VrZCWdu9MqXrpliDQaAj4LyjlFqqlLocQGv9g9b6Q631Inv6UGv9g5lQBUEQBCf44YcfmDBhAidOnOCRRx7h2muv9bZFE6qHNm3gnnuKKhKlX7qvSoVSEKqbQO9MDgRu1Vp/ayIYoWp06NDBFZqmdE3FagLJq/gVzLymp6fTsGFD7/zOnTvp27cvd9xxB99+e/7lXbwyc/wjR0Zx1VXlr69MhbK2e2VK102xBoNAK5OHgXMmAhGqTseOHV2haUrXVKwmkLyKX8HMa6dOndi5cyfPP/88F154oXf5smXLaN++PRMnTqT4oArilfOahYUwc2ZXdu/2XS7QCmVt98qUrptiDQaBVibXAw2UUu1NBCNUDU/3BqGuaUrXVKwmkLyKX8HOa/369fnDH/7A119/zT333ONdfvbsWaZNm8aVV17J22+/jdZavHJYs7DQqiAuWBBecWECq1DWdq9M6bop1mAQaGXyeeAM8KpSqr6BeARBEIRqpFWrVsybN4/PPvuMrl27epcfOHCAu+++m3/84x9BjK5mMn9+0cs2/jJnjrWdIIQigVYmTwO/BroCO5RSv1FKdVNKXa6Ual3e5HzYQll4OgEPdU1TuqZiNYHkVfwKtbx2796dzz//nDlz5tC8eXMAWrRowT333CNeOaz5q1/BmDGBbTNmjLVdRdR2r0zpuinWYBDoCDgFldiH1lrXrcR2NZqoqChdvE2SELp06dKFLVu2BDsMwQ/EK2fIzs5m6tSpdOrUiZEjR5ZY98MPP3DhhRdSr169Ku2jtnvledTtzx3KMWMgKQnCKtWZnzPUdr/chCmvlFLljoAT6FdTVWIK4te/dpGcnOwKTVO6pmI1geRV/ArlvEZHR/PnP//ZW5Esrjlu3DiuueYa75BroYZbvAoLg5tuSq7wDuXNNwdWkazt55UpXTfFGgwCquhprcMqM5kKXiiJZyzRUNc0pWsqVhNIXsUvN+XVo/nRRx+xePFidu/eza233sovfvEL9u7d6/j+qoKbvMrNzSEpyfcj7//+F/wcqAiQ88qUrptiDQZS0RMEQRD84uDBgzRo0MA7/+6779KhQweefPJJTp48GcTI3EtYGGVWKC+4wPrMzIQHH6z+uAQhIMobtFsms1NkZKR2mrNnz7pC05SuqVjj4uIc15S8mtE14ZXWktfimocPH9b33nuvVkppwDu1bNlSz5s3TxcUFPilKV6V1C0o0HrMGK3B+kxJsf72TIsWBTdWuQ66J1ZT5xawRZdTp5E7kzWI1NRUV2ia0jUVqwkkr+KXm/JaXLN58+a88cYbbNq0iRtuuMG7/NChQ4wePZoePXqwadMmx2PwF7d65blDOXeu9fnzn1sv6Hh44AE4ciQwzVDHreeAG3Srm0pVJpVStyqlkpRSnyulvlZK7fMxfeN00ELZ7Nu3zxWapnRNxWoCyav45aa8lqXZpUsXPv30U+bPn0/Lli29y7/44guuv/56du7c6Xgc/uBmr8LCYPToopdtXnwRWtud6x0/DuPGWfcpA9EMZdx+DoSybnUTUGVSKVVPKfUOkAKMAboBVwBtKpgEQRCEGoZSilGjRrFnzx7++Mc/Eh5ujejyi1/8osaMORxMoqPhjTeK5lesgAULghePIJRHoP0//gEYgtVGJgVYDhwAch2NqgajlBoEDIqKimLWrFkAdOvWjaZNm5KSkgJA69at6devH0lJSQCEh4eTkJDA8uXLOXr0KABDhw5l7969bN++HYAePXrQqVMnr2ZsbCy9evVi7ty5AERGRjJq1CiWLFlCVlYWAMOHD2fHjh3eOwi9e/embt26rFu3DoB27drRu3dvr2Z0dDQjRoxg4cKFZGdnAzBy5Eg2b97Mnj17AOjTpw/5+fls2LABsAax79ixo3fIqEaNGjFs2DCUUl7dhIQEUlNTvb/Q+vfvz8mTJ9m4cSNgjSPctm1bli5dCkCzZs0YMmQIc+fOJS8vD4DExEQuvvhir+aAAQM4duyY93FbXFwcMTExrFixArBG/Rg4cCBJSUkUFhYSFhZGYmIiK1eu5ODBgwAMHjyYjIwM4uPjmTVrlmM+NWjQgLy8PGbNmuWYT127dmXBggXk5eWxcOFCx3xKTk72xuqUT2vWrCE9PZ28vDwOHDjgmE9paWnEx8ezbds2x3zydH/TpEkT8vLyHPMJoG5d6/LrlE+et0Jvvvlm1q5d65hPAJ07d2bbtm0+fXruuee48MILWbp0Kddffz1ACZ969OjB2bNnSUtLAyAmJoYDBw446lNsbCw333yz9zrghE/R0dH079/fcZ8SEhJo0qSJN9byfNq3bym9e/dkwwarcj5u3FkOHlxMw4Y55/k0YMAAfvKTn3g1q3o+QdH/J8910CmfevXq5b22OOWT57rn0XXKp9TUVK+mE+dT8f9PeXl5pKWlOeZTSkoK8fHxrFq1yjGfPNc9n5TXmLKsCdgFFAC/D2Q7marnBZwvv/zSFZqmdE3FaqIxs+TVjK6phue1Pa9V1Tx9+rS+9NJL9W233aZ3796ttRavAtE9eVLryy8vehlnwACtCwurphkoch10T6xueAGnDVAIvBLgdkI14PmlFOqapnRNxWoCyav45aa8VlXzhRdeYP/+/bz//vt07NiRxx9/nIKCygyoVjGhePxV1b3wwpIj5aSkWC/qVEUzFAh2XoOtaVK3ugm0MnkCOKm1PmMgFkEQBKEG8uOPP6KUAiA/P5+XXnqJHTt28MYbb1BYWBjk6NxB797wyCNF87/9LezfH7RwBKEEgVYmNwAXKaUuNRGMUDU6derkCk1TuqZiNYHkVfxyU16rqvnXv/6VtLQ0brzxRu+y/Px8EhMT6datm6N3Z0Lx+J3S/dOfoG1b6+/sbKvroNJvd9f288qUrptiDQaBVianYr1s84KBWIQq0tZzlQlxTVO6pmI1geRV/HJTXp3QvO6660hNTeXtt98mJibGuzwtLY2ePXsyatQoDhw4UOX9hOrxO6EbGWk93rZv8rJmDcyeXTXNYBIqeQ2Wpknd6ibQsbl3YL3NfatS6n2l1E1KqSgjkQkB43mbLNQ1TemaitUEklfxy015dUpTKcWIESPYvXs3LVu2JCIiwrtuwYIFdO/enXPnzlVpH6F8/E7o9uwJjz9eNP/44/Ddd1XTDBahlNdgaJrUrW7KrUwqpQrKmoBVwEVAP2AdkF1eWXvKr6ZjEQRBEFxAVFQUrVq1YteuXQwdOtS7/He/+x316tUrUfb48eMkJSUxZcoUkpKSOH78eHWHG3JMngxXXWX9feoU3HsvSNNTIZj4ujOpHJpkyMZqolmzZq7QNKVrKlYTSF7FLzfl1VSsbdq0YcmSJaxbt45hw4bxwAMPeNdprZk6dSoxMTGMHTuWp556irFjxxITE8PUqVM93dVVS6yh5tUFF8C8eUUj5axfD6+9VjXNYBBqea1uTZO61Y0q74RUSl3m1E601t87pVVTiIqK0qdPnw52GIIfdOnShS1btgQ7DMEPxCv3UJFXU6dOZdKkSeWunzJlChMnTjQRmmsYP956KQes9pTbtxe9oOM0cm65B1NeKaXStNZdylpX7l1DrfX3Tk2OH5FQJn71Uh8CmqZ0TcVqAsmr+OWmvFa3V8ePH2fatGk+y0ybNq3MR95uOv6q6j79NHTsaP2dkwNjxsCbb1ZNszoJ1bxWl6ZJ3erG5yNopdSHSqnF1RWMUDU8QzeFuqYpXVOxmkDyKn65Ka/V7dWyZcvIzfU9Sm9ubi7Lli07b7mbjr+quvXrW4+769Sx5j/5BFatutKByKqHUM1rdWma1K1uKmrPeBPQsxriEARBEAQADh065Gi5mkznzjBhQtH88uVd+frr4MUj1E7KbTMJoJQqBA5rrVtVX0i1AxNtJj0Dwoe6pildU7GaaH8ieTWja6qtUG3Pa3V7lZSUxNixYyvUuPvuu0lOTvaOrgPuOX4ndfPy4PrrYds2a757d+supeeOpRPIddA9sYZUm0nBfaxZs8YVmqZ0TcVqAsmr+OWmvFa3V7fffnuJPijL45///CdDhw4lKyvLu8xNx++Ubni49bjb06vS55/Diy86Im2UUM+raU2TutWNVCZrEOnp6a7QNKVrKlYTSF7FLzfltbq9aty4MROKP7v1wfLly/nyyy+98246fid1r7nGeiHHw6RJsHOnY/JGcENeTWqa1K1upDIpCIIghBwTJkxgypQp592hjIiI4Omnn+bBBx8EYOLEifTu3TsYIYYcf/gDtG59DLAefY8eDVUcUEgQ/MKfNpNngEVV2IfWWt9Xhe1rJCbaTB44cIBLLrkk5DVN6ZqK1UT7E8mrGV1TbYVqe16D6dXx48dZtmwZhw4domXLltx+++00btwYgPXr1xMfH0/dunVLxNqyZUtH26G5yasPPzzCbbc1x/OS8NSpJV/QqSxyHXRPrMFoM1m3rIWliABGV3bfgAakMmmjlBoEDIqKimLWrFkAdOvWjaZNm5KSkgJA69at6devH0lJSQCEh4eTkJDA8uXLOXr0KABDhw5l7969bN++HYAePXpw+PBhr0ZsbCy9evXy9mEVGRnJqFGjWLJkibd90fDhw9mxYwc77WchvXv3pm7duqxbtw6Adu3accEFF3g1o6OjGTFiBAsXLiQ7OxuAkSNHsnnzZvbs2QNAnz59yM/PZ8OGDQB06NCBjh07smiR9XukUaNGDBs2jH//+9/UsVuHJyQkkJqayr59+wDo378/J0+eZOPGjQB06tSJtm3bescwbdasGUOGDGHu3LnebhUSExP58MMPOXPmDAADBgzg2LFjbNq0CYC4uDhiYmJYsWIFAK1atWLgwIEkJSV5G0AnJiaycuVKDh48CMDgwYPJyMggPj6eWbNmOeZTgwYNWLZsGZGRkY751LVrVxYsWEBOTg4tWrRwzKfk5GQyMzOJjIx0zKc1a9aQnp5OTk4Ov/zlLx3zKS0tjfj4eLZt2+aYT6tXrwbgwgsvZNiwYY75BNYIL+PGjXPMp5ycHAA6d+7Mrl27HPMJ4IorrnDUJ4CYmBgOHDhQoU8ff/wxhYWFNG/enNtvv529e/d6Y+/RowcHDhzw+hQbG0t+fj5du3Zl6NChXH/99VX2KTo6mquuuoqPP/7YUZ8SEhLYsGEDp06dcsynAQMGcOpUGgMHNuedd64H4NlnNbm5S7n00ixatGjFDz8M5OzZJMA/nzzXPc910InzyXPdW7x4MZGRkY6cT8X/Px0+fJjIyEjHfEpNTWXHjh1ERkY65pPnfMrJySE+Pr7K51Px/0/x8fGsWrXKMZ/86gtTa13uBBQCucD6qky+9lFbp8jISO00M2fOdIWmKV1TscbFxTmuKXk1o2vCK60lr27xKj8/X1955ZUa6yaGfvTRR3Vubm6Vdd3mVX6+1t27aw3WdO21Wp85o/WYMdb8mDFaFxQEpivXQffEauo6CGzR5dRp/LkzmaW1/pkf5QRBEAQhaOzfv58jR454519++WU2bNjAwoULueKKK4IYWfVSpw7MnQvXXgu5uVaXQTfcUNR10Jw51mdSUtH43oJQFeRrVIOIi4tzhaYpXVOxmkDyKn65Ka9u8apNmzYsWbKEgQMHepdt3bqVzp07k5ycXGldN3p15ZXw3HNFyz0VSQ9z5kBiIhQWOh6C37gxr27RrW6kMlmDiImJcYWmKV1TsZpA8ip+uSmvbvKqY8eO/Pvf/+Zvf/sb4eHhAJw6dYpf/epXJCQkeNsoBoJbvXr4YWjevPyywa5QujWvbtCtbqQyWYPwNN4NdU1TuqZiNYHkVfxyU17d5pVSikceeYTPP/+8xOPtefPmERcXx3/+85+ANU1g0qvCQrj/fij21L9MglmhdGNe3aJb3UhlUhAEQaiRXHfddaSlpXHPPfd4l+3Zs4fu3bt73/CtiRQWWhVET9vIigj2HUrB/UhlsgbRqpXzQ6ib0DSlaypWE0hexS835dXNXjVo0IB58+bx1ltvERUVBcBdd91Fu3btKq3pFKa8mj/f/4qkhzlzYP58x8PxidvyagI3nVu+8NlpuWAOE52WC2Yw1QGs4DzilXsIhlf/+9//mDhxIm+88QYXXnhhte67Ogn0ziTAmDG+3+6Wc8s9BKPTcrkzWYPwdE4a6pqmdE3FagLJq/jlprzWFK+uuOIKFi1adF5F8tSpU/z1r38lPz8/YM2qYMqrsDCrYjhmjH/bVFSRNIXb8moCN51bvpDKZA2i0ECDFxOapnRNxWoCyav45aa81nSvHnroIR599FH69OlDRkaGI5r+YNIrfyuUCQnB62/SjXl1i251I5XJGoSTY9Ga1DSlaypWE0hexS835bUme/X+++8zb948AFJTU+nUqRP//ve/q6TpL6a98qdC2alT8Doud2te3aBb3UibySAhbSbdg7QVcg/ilXsIFa8KCgp47rnneOaZZ0rcJXr44Yf585//TERERBCjcwZfbSgjI2HHDrj8ct8aoeKXUDHSZtJGKTVMKfWKUupjpVS2UkorpXwOX6CU6qGUek8plaWUOqOU+q9S6rdKqTo+thmolPpIKfWjUuqUUuoLpdToCvYzWim1yS7/o739QF/bVBcrV650haYpXVOxmkDyKn65Ka812as6deowadIkNmzYwKWXXupd/sorr9C9e3e+/vpr13tV+g7l6NHQoYP1d06O1R9lMO4ruT2voaxb3YRkZRKYCDwEXAscqKiwUmowkAr0ApYBrwLhwMvAwnK2eQh4F+gIJAOzgVbAXKXU9HK2mQ7MBVra5ZOBnwLv2npB5eDBg67QNKVrKlYTSF7FLzfltTZ4deONN7Jt2zaGDBniXbZ9+3Y6d+7M4sWLMfEUrzq98lQo586FN9+0Js8T1rVrreXVjZwD7jq3fBGqlclHgXZANPB/vgoqpaKxKnYFwE1a6/u01k9gVUQ/A4YppUaU2qYNMB3IArporR/UWj8KXAN8AzyulLqh1DY9gMft9ddorR/VWj8IxNk6021dQRAEwYU0atSId955h1dffZX69esDkJOTw1tvvcXIkSPJyckJcoRVIyzMuisZFgbdusGjjxate+wxOHQoeLEJLkdrHdITcBOggeRy1t9rr59Xxrqb7XUbSi2fbC9/1l894C17+ZgytilXr7wpMjJSO83hw4ddoWlK11SscXFxjmtKXs3omvBKa8lrbfRq27Zt+sorr9T2tV336dNHFxQUOKLtIdhenT6tdWys1tZDbq3vuKP8snIddE+sps4tYIsup04TqncmA+Fm+3NVGetSgRygh1Kqvp/bvF+qTFW2qVbK6tIiFDVN6ZqK1QSSV/HLTXmtjV516tSJtLQ07r33Xi6++GLmz5/v+Ju3wfYqMtJ69O3hnXdgyRLHQyoXOQfcdW75om6wA3CAK+3P8wZa1VrnK6W+BToAscAuP7Y5pJQ6DcQopSK11jlKqSjgEuCU1rqsBwH/sz99js+llLofuN/+my5dynwpqtIcO3aMpk2bhrymKV1Tse7atcsVXpnSdVOsJrwCyWtt9yoyMpJBgwaVWKa1pqCggLp1K/9vNFS8atJkPJmZdwBw113HmTr1l9Stm12ijFwH3ROrqXPLJ+XdsgyViYofc++x17ctZ/2n9vobii3Ls5fVLWebA/b6lvZ8K3s+o5zy9ez1Z/09LhOPuWfOnOkKTVO6pmI18chA8mpG19TjndqeV/HqfM1JkybpFi1a6LVr1zqqW1Uqo/nDD1q3alX0uHv06PPLyHXQPbHKY26hSnTr1s0VmqZ0TcVqAsmr+OWmvIpXJTXXr1/P1KlTOXz4MLfccgsTJkwodyjGQHSdoDKaDRvCa68Vzc+bB6tXOxdTecg54K5zyxc1oTL5o/15UTnrPctPVGKbH0t9BrKPasfELXgTmqZ0TcVqAsmr+OWmvIpXJTULCgpo0qQJYD3de+655+jduzfff/99lXSdoLKav/gFjCjW78n998PJkw4FVQ5yDrjr3PJFTahMfm1/ntdeUSlVF7gcyAf2+blNSyAK65F2DoDW+jTWo+8L7fWlucL+PK8NZnWSkpLiCk1TuqZiNYHkVfxyU17Fq5Kaffv2Zfv27fTp08e7bOPGjVx77bUsXbq00rpOUBXNv/0NGje2/k5PhwkTHAqqHOQccNe55YuaUJn80P68tYx1vYBIYKPW+qyf29xWqkxVthEEQRBqIC1btmTNmjU899xz1KljDbR24sQJhg0bxv/93/9x5syZIEcYOM2aWRVKD6++Cp9+Grx4BPdQEyqTS4BMYIRSyvv6klIqAphqz75Waps5wFngoeIdjSulLgbG27Ovl9rGMz/BLufZpg3woK1Xxsin1Ufr1q1doWlK11SsJpC8il9uyqt4VbZmWFgYf/zjH0lNTeWyyy7zLn/99dfp1q0bO3furJRuVaiq5t13w89/bv2tNdx3H+TmOhBYGcg54K5zyxfKekEntFBKDQGG2LMtgP5Yj6k/tpdlaq1/V6r8EiAXa/jELOAXWF0ALQHu1KUOVCn1MPB34DiwCOsN72FADPBicf1i27wIPAZk2LrhwHCgMfCw1vpVf48xKipKnz592t/iflFYWOh4P2gmNE3pmoq1S5cubNmyxVFNyasZXRNegeRVvKpY88SJE4wdO5YlxTpq7NatG59//jlKqZCKtSL274err4ZTp6z58eNh9Wq5DrolVlPnllIqTWtdZp9DoXpn8lpgtD31t5fFFls2rHhhrfVyoDdWJ+VDgYeBc1gVvxGlK5L2Nq9gVTh3Avdg9f94GEgoqyJpb/M4MMYud7+93U5gUCAVSVMkFe99NoQ1TemaitUEklfxy015Fa8q1mzYsCH/+te/mDlzJhEREVxwwQW8+eab5VYk/dUNFCc0L70U/vznovkXXoCcHJ/dKFcKOQfcdW75IiQ7LddaPwM8E+A2nwI/D3Cbd4F3A9xmLjA3kG0EQRCEmo9Sivvvv58ePXqwe/duOnToEOyQKs24cbBwIaSmQkEBfPfdU+TnQxX6aBdqMKF6Z1KoBOHh4a7QNKVrKlYTSF7FLzflVbwKTLNjx44MGzbsvOVvvvkmL7zwAoWFhZXS9QenNMPCYPZsiIiw5s+cuYoXX3RE2oucA+46t3wRkm0mawMm2kwKZjDV/kRwHvHKPdQ2r7766iu6dOnCmTNnuOWWW5g/fz7NmzcPdlgV8uc/wx/+YP1dvz5s3w5XXul7GyG4SJtJoUosX77cFZqmdE3FagLJq/jlpryKV1XXnD59ure7oA8++IBOnTrxzDPPVFm3NE4f/2OPQefO1t9nz0JiItg3VquMnAPuOrd8IZXJGsTRo0ddoWlK11SsJpC8il9uyqt4VXXNmTNn8sc//tH7Qs6RI0d49tlnefLJJzl37hzHjx8nKSmJKVOmkJSUxPHjx4MWa3Hq1oU33wRr7A/45BN4vXTHeZVEzgF3nVu+kMqkIAiCIBimXr16PPfcc6xZs6bE4+0XXniB2NhYLrnkEsaOHctTTz3F2LFjiYmJYerUqYRCU7ROnaBFi3ne+T/8wRohRxC8aK1lCsIUGRmpnSYzM9MVmqZ0TcUaFxfnuKbk1YyuCa+0lryKV85qHj58WPfv318DFU5TpkwJaqwerruuu77qKq2trsy1vu02rQsLtS4o0HruXOszUGr7OWBK19S5BWzR5dRp5M5kDWLv3r2u0DSlaypWE0hexS835VW8clazefPmvPfee9x3330Vlp02bVpAj7xNeRUWdo433gBPt5nvvw9vvWW1oUxIqFxbSjkH3HVu+UIqkzWI7du3u0LTlK6pWE0geRW/3JRX8cp5zbCwMPLy8iosl5uby7Jly/zWNelVjx7w8MNF8/ffD3PsQYTnzAm8QinngLvOLV9I96PVjFJqEDAoKiqKWbNmAdaQW02bNiUlJQWwxurs16+ft2f88PBwEhISWL58ubex7tChQ9m7d6/3i9ijRw/Onj3r1YyNjaVXr17MnTsXgMjISEaNGsWSJUvIysoCYPjw4ezYscM7fmzv3r2pW7cu69atA6Bdu3YUFBR4NaOjoxkxYgQLFy4kOzsbgJEjR7J582b27NkDQJ8+fcjPz2fDhg0AdOjQgY4dO7Jo0SIAGjVqxLBhw8jKyvLqJiQkkJqayr59+wDo378/J0+eZOPGjQB06tSJtm3bsnTpUgCaNWvGkCFDmDt3rvdinJiYSHZ2tldzwIABHDt2jE2bNgEQFxdHTEwMK1asAKBVq1YMHDiQpKQk73BWiYmJrFy5koMHDwIwePBgMjIyiI+PZ9asWY751KBBAzIzM5k1a5ZjPnXt2pUFCxaQmZnJwoULHfMpOTnZG6tTPq1Zs4b09HQyMzM5cOCAYz6lpaURHx/Ptm3bHPNp9erVAGRnZ5OXl+eYT4B3O6d8ysnJAazh2dauXeuYTwB5eXls27bNMZ8AYmJiOHDggKM+xcbGUlhY6L0OOOFTdHS0EZ8SEhI4cuQI/vDuu+/SpEmTCn0aMGAAOTk53uN3wifPdc9zHbzppstZvrwv6emK0nXhOXPg66+/ZvnyJuzb59unXr16ea8tTvnkue55dJ3yKTU11avpxPlU/P9TZmYmaWlpjvmUkpJCfHw8q1atcuR8Kv7/ySflPf+WyX1tJr/88ktXaJrSNRWrifYnklczuqbaCtX2vIpXZrx65pln/Go3OXv27KDH6vGroEDrfv2K2k6WNY0Z418bytp+DpjSlTaTQpVo0KCBKzRN6ZqK1QSSV/HLTXkVr8wc/+DBg4nwDDFTDkopjh075remSa8KC61H2WvW+C7n7yNvOQfcdW75QiqTNQjPrelQ1zSlaypWE0hexS835VW8MnP8mzZtYsKECT7LaK0ZP348jzzyCAUFBRVqmopVa0ViYlEbyYrwp0Ip54C7zi1fSGVSEARBEILEhAkTmDJlynl3KCMiIoiJifHOv/LKKwwZMoRTp05Vd4gAZGX93O+KpIc5c2D+fDPxCKGFVCZrELGxsa7QNKVrKlYTSF7FLzflVbwy55VSiokTJ5KRkcHs2bOZPHkys2fPJiMjgz179vDLX/7SW37lypXEx8dz4MCBao+1UaP3GDMmsG3GjIFf/ar89XIOuOvc8oWy2lQK1U1UVJQ+ffq0o5p5eXmEh4eHvKYpXVOxdunShS1btjiqKXk1o2vCK5C8ilfB86qwsJAJEybw/PPPe5ddcsklrFy5kmuvvbZSmpWhS5cubNq0xe9H3WPGQFIShPm4ZVXbzwFTuqbOLaVUmta6S1nr5M5kDcKv1/dDQNOUrqlYTSB5Fb/clFfxynlNf3XDwsL405/+RFJSEnXrWr35HThwgBtvvJGVK1dWSrOyhIVZFcSK7lDecUfFFUmQc8CkbnUjlUlBEARBCHHuu+8+3n//fS666CIATp8+zeDBg3nllVeqNQ5/KpQBvHwu1BCkMlmDiIyMdIWmKV1TsZpA8ip+uSmv4lVoeNW3b182btxImzZtAOsR+MaNGyneXK06vCqvQukZavHjj/17FB4qeQ2Wpknd6kbaTAYJE20mBTOYan8iOI945R7Eq8pz5MgRBg8eTJ06dVi3bl2FfVU6QVl+efqdnDPHqlg2bQp//rO1rmFD2L0bmjc3HppQCmkzKVSJJUuWuELTlK6pWE0geRW/3JRX8Sq0vGrevDnr16/n3//+93kVyer0ynOHcu5c6/Ppp8HzcvKJE/Doo763D7W8VremSd3qRiqTNQjPmKahrmlK11SsJpC8il9uyqt4FXpeXXDBBTRu3LjEMq01c+bMYdu2bVWMzH/CwmD0aOszMhJef71o3dtvw/vvl79tKOa1OjVN6lY3UpkUBEEQhBrASy+9xHvvvceNN95ISkpKUGK45RYYNapo/v/+D6RFV81H2kwGCRNtJn/88Ufvm36hrGlK11SsJtqfSF7N6JpqK1Tb8ypehb5XWVlZtG3blh9++AGwuhT629/+xl133cWyZcs4dOgQLVu25Pbbbz/vjqY/BOLXsWNw1VXguen2+OMwffr55dyQV5OapnSlzaRQJXbs2OEKTVO6pmI1geRV/HJTXsWr0PeqUaNGfPzxx7Ro0QKw3vR++OGHad68OWPHjuWpp55i7NixxMTEMHXqVEzeSGraFF56qWj+5Zdh69bzy7khryY1TepWN1KZrEHs3LnTFZqmdE3FagLJq/jlpryKV+7wqkOHDjz++ON069bNu6ygoKBEmdzcXCZNmsS0adMc3Xdp7rkHbr7Z+ruwEO6/H/LzS5ZxS15NaZrUrW6kMikIgiAINYTo6GiWLFlCWAXDz0ybNo3jx48bi0Mp62Wc+vWt+bQ0qOb+1YVqRNpMVjNKqUHAoKioqLEv2c8BunXrRtOmTb0Nplu3bk2/fv1ISkoCIDw8nISEBJYvX87Ro0cBGDp0KHv3XHii4QAAKeRJREFU7mX79u0A9OjRgx9++IFdu3YB1uDxvXr18g7VFBkZyahRo1iyZIn37bHhw4ezY8cO7y+j3r17U7duXdatWwdAu3btuPjii/niiy8A6yI1YsQIFi5cSHZ2NgAjR45k8+bN7NmzB4A+ffqQn5/Phg0bAOuXcseOHVm0aBFgPYoZNmwYM2fORNk93CYkJJCamsq+ffsA6N+/PydPnmTjxo0AdOrUibZt27J06VIAmjVrxpAhQ5g7dy55eXkAJCYmsmjRIk6ePAnAgAEDOHbsGJs2bQIgLi6OmJgYVqxYAUCrVq0YOHAgSUlJFBYWEhYWRmJiIitXruTgwYMADB48mIyMDJKTk2nfvr1jPjVo0IAVK1YQERHhmE9du3ZlwYIF5Obm0qxZM8d8Sk5OJisri4iICMd8WrNmDenp6eTm5jJ06FDHfEpLS2PXrl2MHj3aMZ9Wr14NQMOGDb3H4oRPgPdYnPIpJyfHG/vhw4cd8wmgY8eOREZGOuYTwHvvvceMGTMc9Sk2NpYWLVp4j9UJn6Kjo7nuuuv4z3/+46hPnmM7ceKEYz4NGDCAL7/8kn/+85/Mnz+firjnnnuYN2+eT588173p06fTvn37gH16771rWbGim132HM88s5iuXZvRq1cvXn/9dSIiIhzzyXPdO3r0KBEREY75lJqayldffUVERIRjPnmue7m5ufTs2bPK51Px/0+7du2if//+jpxPxf8/jRs3rtw2k2itZQrCFBkZqZ1m7969rtA0pWsq1ri4OMc1Ja9mdE14pbXkVbxyl1eTJ0/WQIXT5MmT/datrF9nz2rdsaPWYE0DBmhdWFgUqwlq+3fA1LkFbNHl1GnkMXcNwvOLLdQ1TemaitUEklfxy015Fa/c5VXLli39KutvuaoQHg6zZhUNtZiSAosXW3+7La8mcNO55QupTAqCIAhCDeL222+vcIjFiIgI7rjjjmqJ54YbrP4mPTzyCNg9GAk1BKlM1iDatWvnCk1TuqZiNYHkVfxyU17FK3d51bhxYyZMmOCz3IQJE2jUqBGff/65tw2dSZ57Dlq1sv4+cgT+8Af35dUEbjq3fFLe82+Z3Ndm8tSpU67QNKVrKlYT7U8kr2Z0TbUVqu15Fa/c51VhYaGeMmWKjoiIKNFOMiIiQk+ZMkUXFhbq3bt364YNG+o2bdroHTt2+NR1wq933ilqOwlar16dU2XNsqjt3wFpMylUCc9bbaGuaUrXVKwmkLyKX27Kq3jlPq+UUkycOJGMjAxmz57N5MmTmT17NhkZGUycOJH8/HwGDx7MiRMn+O6777jhhhtYtWqV4/EU5/bbYciQovnRo3M5e9b5/dT270AwkMqkIAiCINRQGjduTGJiIpMmTSIxMdE7lGK9evWYPn06F154IQAnT55kwIAB/P3vf8e6CWWGV16BBg2svw8fvpjnnze2K6EakcpkDSI6OtoVmqZ0TcVqAsmr+OWmvIpXNdOrgQMH8umnn9K6dWvAGoLxN7/5DQ888ADnzp1zPDaAmBir/aSH556D3bux9w/z5lmfVSHYeQ0F3epGOi0PElFRUfr06dPBDkPwgy5durBly5ZghyH4gXjlHsSr0OHIkSMMGTKEzz//3Lusb9++LF68mIYNGwLO+lVQAD17gj0eBvHx8OGH1pCLc+bAmDGQlAQVDOIjlIOpc0spVW6n5WJVDWLhwoWu0DSlaypWE0hexS835VW8qtleNW/enPXr13PXXXd5l61du5YbbriBvXv3OhkeAHXqWH1P1qlj3YL8+GO46SarIgnWZ2Ji5e9Qhkpeg6lb3UhlsgbhGeor1DVN6ZqK1QSSV/HLTXkVr2q+VxERESxYsIBnn33Wu2z37t10797dSNdB11wDt9yy3Tv/6acl11elQhlKeQ2WbnUjlUlBEARBEFBK8dRTT7Fw4UJvp+f33XcfzZo1M7K/227b6n0ZpyyqeodSqD6kzWSQMNFm8vTp00RFRYW8pildU7GaaH8ieTWja6qtUG3Pq3hV+7z64osveOONN3j99dcJCwsr4dfx48dZtmwZhw4domXLltx+++3et8T9pbAQEhLOMX9+vQrLBtqGMpTzWh260mZSqBKbN292haYpXVOxmkDyKn65Ka/iVe3z6vrrr2fWrFmEFavBaa2ZNGkSMTExjB07lqeeeoqxY8cSExPD1KlT/e5SqLDQuuPoT0USAr9DGcp5rS7d6kYqkzWIPXv2uELTlK6pWE0geRW/3JRX8Uq8ApgyZQpTp04lNze3xPLc3FwmTZrEtGnT/NKZP7/oZRt/mTPH2s4f3JRXN51bvpDKpCAIgiAIPsnPz2fy5Mk+y0ybNo3jx49XqPWrX1mPrgNhzBhrOyE0kcpkDaJPnz6u0DSlaypWE0hexS835VW8Eq9OnDhBQUGBzzK5ubksW7asQq2wMKsN5LBh/r3JHGibSTfl1U3nli+kMlmDyM/Pd4WmKV1TsZpA8ip+uSmv4pV45e+IOIcOHfKrXFgYTJ58qMI7lJXpwNxNeXXTueWLusEOoLahlBoEDIqKimLWrFkAdOvWjaZNm5KSkgJA69at6devH0lJSQCEh4eTkJDA8uXLvf19DR06lL1797J9u9VPV48ePVi/fj0bNmwAIDY2ll69ejF37lwAIiMjGTVqFEuWLCErKwuA4cOHs2PHDnbu3AlA7969qVu3LuvWrQOgXbt27Nq1y6sZHR3NiBEjWLhwobdvrJEjR7J582Zvu48+ffqQn5/v3aZDhw507NiRRYsWAdCoUSOGDRvGsmXLaNSoEQAJCQmkpqayb98+APr378/JkyfZuHEjAJ06daJt27YsXboUgGbNmjFkyBDmzp1LXl4eAImJibz77rve/Q4YMIBjx46xadMmAOLi4oiJiWHFihUAtGrVioEDB5KUlERhYSFhYWEkJiaycuVKDh48CMDgwYPJyMggPj6eWbNmOeZTgwYNWLp0KU2aNHHMp65du7JgwQIyMzOJjY11zKfk5GTS09Np0qSJYz6tWbOG9PR0MjMzGT16tGM+paWlER8fz7Zt2xzzafXq1YDVF9zll1/umE8AWVlZPPnkk475lJOTA1hD4u3fv98xnwDy8vI4c+aMYz4BxMTEcODAAUd9io2NZe/evd58OeFTdHQ02dnZ/Oc//3HUp4SEhBLXLCd8GjBgAO+//75X0wmfPNe9q6++2lvGF//73/84fvx4hT716tWLZcuW0q1bE7755mZSU9uWqdew4bskJR3yyyfPdW/fvn00adLEMZ9SU1PZtGkTTZo0ccwnz3UvMzOT/v37O+ZTSkoK8fHxrFq1ypHzqfj/J59orWUKwhQZGamdZubMma7QNKVrKta4uDjHNSWvZnRNeKW15FW8qt1eaa11p06ddEREhAbKncLCwnR6enrAsRYUaD1mjNZw/nT55VqfOqW95ebOtT790XUSN30HTJ1bwBZdTp1GHnPXIDp06OAKTVO6pmI1geRV/HJTXsUr8apu3bpMmDDBZ5nCwkJuv/12jhw54pemJ1ZPG0rPI+/hw+Gii6y/v/0WnnyyqDuhhISKuwlyU17ddG75Qh5z1yA6duzoCk1TuqZiNYHkVfxyU17FK/EK8FYmp02bVqJ7oLp163rb/p06dYp69fzrP7J4rJ4KZe/e1lvbyckwerS17tVX4Ztv4P33rXlPt0LltaV0U17ddG75Qu5M1iA87T5CXdOUrqlYTSB5Fb/clFfxSrwCa7jFiRMnkpGRwezZs5k8eTKzZ8/m8OHDvPbaa7Rs2ZL33nvP2x4+0FjDwqwKZFiYVaEcOLBonaci6cFXR+Zuyqubzi1fyJ1JQRAEQRD8pnHjxiQmJpZY9utf/5pRo0Zx4YUXOrIPpeC112DNGrDfYzmPiu5QCtWHpL8G4e+vwWBrmtI1FasJJK/il5vyKl6JV/5QVkVy4cKFTJ48ucyhFn3FWlgITz1VfkXSQ1l3KN2UVzedW75QZRksmCcqKkqfPn062GEIftClSxe2bNkS7DAEPxCv3IN45S4q49cnn3xCnz59yMvLY8yYMcycOdOv9pSel20CGXKxMv1R1lRMnVtKqTStdZey1knaaxDJycmu0DSlaypWE0hexS835VW8Eq8qw6uvvurta3HOnDn8/Oc/58cff/SuLy/Wqo7d7aa8hpJfVUEqkzUITyeroa5pStdUrCaQvIpfbsqreCVeVYb58+czptgQN2vXrqVnz57ezrvLi7UyY3dfcQWMHIlP3argpu9AMJDKpCAIgiAIjlOvXj3eeOMNpkyZ4l22c+dOunfvztatWzl16hRJSUlMmTKFpKQkjh8/Dpzf76Q//O9/cP/9vvufFMwhbSaDhIk2k3l5eYSHh4e8pildU7GaaH8ieTWja6qtUG3Pq3hVu72CqvuVnJzMvffe6x3ju169eiilvI/BASIiIpgwYQITJkxAKVXptpP/+EceERHuyKubzi1pM1lLSE1NdYWmKV1TsZpA8ip+uSmv4pV4VVVGjRrFmjVraNiwIQDnzp0rUZEEyM3NZdKkSUybNg2o3B3KOXNgyJBMx+9Quuk7EAykMlmD2Ldvnys0TemaitUEklfxy015Fa/EKye46aabSElJQSnls9y0adNKPPKeNctqE+kvq1e3qnDIxUBx03cgGEhlUhAEQRCEauGrr74qs8/J4uTm5rJs2TLv/IIFVpvIQCj+drdgHqlM1iD69+/vCk1TuqZiNYHkVfxyU17FK/HKKQ4dOhRwucq83T1mjLWdU7jpOxAMZDjFGsTJkyddoWlK11SsJpC8il9uyqt4JV45RcuWLf0ud/z4cZYtW8ahQ4fo3r0lubm38/bbjSvcdsiQH0hKutjRDszd9B0IBnJnsgaxceNGV2ia0jUVqwkkr+KXm/IqXolXTnH77bcTERFRYbmkpCRiYmIYO3YsTz31FOPGjWXZshiuu24qUP5j8jFjoH//xY6PhOOm70AwkK6Bqhml1CBgUFRU1NiXXnoJgG7dutG0aVNSUlIAaN26Nf369SMpKQmA8PBwEhISWL58OUePHgVg6NCh7N27l+3btwPQo0cP1q9fT/369QGIjY2lV69ezJ07F4DIyEhGjRrFkiVLyMrKAmD48OHs2LGDnTt3AtC7d2/q1q3LunXrAGjXrh27du2iTp06AERHRzNixAgWLlxIdnY2ACNHjmTz5s3s2bMHgD59+pCfn8+GDRsA6NChAx07dmTRokWANQ7psGHDeP75571jkiYkJJCamuptiNy/f39OnjzpPck6depE27ZtWbp0KQDNmjVjyJAhzJ071/s2YGJiIi+99BLR0dEADBgwgGPHjrFp0yYA4uLiiImJYcWKFQC0atWKgQMHkpSURGFhIWFhYSQmJrJy5UoOHjwIwODBg8nIyCA5OZn27ds75lODBg1YsGABTZo0ccynrl27smDBAjIzM4mNjXXMp+TkZNLT02nSpIljPq1Zs4b09HQyMzMZPXq0Yz6lpaWxa9cuRo8e7ZhPq1evBiA7O5tHHnnEMZ8AsrKyePLJJx3zydP5cWFhIW3btnXMJ7C6L7nxxhsd8wngvffeY8aMGY76FBsby969ewmzaxJO+BQdHU12drb30ymfEhIS+Pvf/+69Zjnh04ABA1i8eDGRkZGO+eS57k2fPp327ds74tNnn33mPZcqw6WX/ob9+/963vIxY6Bv34V8990+mjRp4phPqampbNq0iSZNmjjmk+e6l5mZSf/+/R3zKSUlhV27dtG/f39Hzqfi/5/GjRtXbtdAaK1lCsIUGRmpnebzzz93haYpXVOxxsXFOa4peTWja8IrrSWv4lXt9kprZ/0qLCzUU6ZM0fXr19dYtxk1oCMiIvRPfvKTEsvKmurWrau7dXtZQ6YGrUHrMWO0Liiw9N2UVzedW8AWXU6dRh5z1yDatm3rCk1TuqZiNYHkVfxyU17FK/HKSZRSTJw4kS+//JLZs2czefJkZs+eTUZGBr///e8r3D4/P59Nmx6lTp0YYCoJCZqkJLyPtt2UVzf45Q9SmaxBeG6zh7qmKV1TsZpA8ip+uSmv4pV4ZYL169eTmJjIpEmTSExMpHHjxhw5csTv7QsKcoFJxMZOK9FG0k15dZNfvpDKpCAIgiAIIYG/b3sX57nnijo5F4KDVCZrEM2aNXOFpildU7GaQPIqfrkpr+KVeGWCsmL1923v4pTu5NxNeXWTX76Qt7mDRFRUlD59+nSwwxD8oEuXLmzZsiXYYQh+IF65B/HKXVSnX1OnTmXSpEkBbTN58uSAt6mpmPJKKVXu29xyZ7IGUZWuFqpT05SuqVhNIHkVv9yUV/HKeU1TujXBqwkTJjBlypSA7lAWfzzupry6yS9fSGWyBuHp0yrUNU3pmorVBJJX8ctNeRWvxCsTlBer523vjIwMXn75ZerW9T1YX0REBHfccUeFulXBTd+BYCCVSUEQBEEQQo7GjRvz29/+lqefftpnuQkTJngHwRCCg7SZDBIm2kx6esoPdU1TuqZiNdH+RPJqRtdUW6HanlfxqnZ7BcG9DmqtmTZtGtOmTSM3N9e7PCIiggkTJjBhwgSUUgHrmog1FHSlzaRQJdasWeMKTVO6pmI1geRV/HJTXsUr8coE/sZa/LF36U7OJ06cWKIiGYiuiVhDRbe68d0QQSgTpVQMMBm4FWgMHAKWA89qrX8IVlyecT9DXdOUrqlYTSB5Fb/clFfxSrwyQaCxNm7cmMTERMd1/cFN34FgIJXJAFFK/QTYCDQDVgC7gW7Ab4BblVI9tdbSe6ogCIIgCLUCecwdOP/Aqkg+orUeorV+Umt9M/AycCUwLViBDRgwwBWapnRNxWoCyav45aa8ilfilQkkr+7yyxdSmQwA+65kP+A7YEap1U8Dp4FfKaWiqjk0AI4dO+YKTVO6pmI1geRV/HJTXsUr8coEkld3+eULqUwGxs/szzVa68LiK7TWJ4FPgUige3UHBrBp0yZXaJrSNRWrCSSv4peb8ipeiVcmkLy6yy9fSGUyMK60P/eUs/5/9me7aohFEARBEAQh6Eg/kwGglJoFjAXGaq2Tylg/DRgPjNda/6mM9fcD99uzHYEdDod4EfCjCzRN6ZqKtQmQ6bCm5NWMrgmvQPIqXtVur0Cug26K1dS5dYXW+qIy12itZfJzAmYBGkgsZ/00e/0f/dDaYiI+N2i6MFZXeOXCvJqI1XGvJK/iVW33ypRfkteac27JY+7A8Px6KLtmXrT8hPlQyuRdl2ia0jUVqwkkr+KXm/IqXpnBTbGaQPJaQ/ySx9wBoJRKBGZj1c7HlbF+Ndbb3n211usq0NqiyxmWSAgtxCv3IF65B/HKXYhf7iEYXsmdycBYb3/2U0qVyJ1SqgHQE8gBPvdDa5bDsQnmEK/cg3jlHsQrdyF+uYdq90ruTAZIsbuPj2itXym2/CXgUWCm1vrXwYpPEARBEAShOpHKZICUMZziLuB6rD4o9wA9tAynKAiCIAhCLUEqk5VAKXUpMBm4FWgMHAKWAc9qrX8IZmyCIAiCIAjViVQmBUEQBEEQhEojL+AEgFIqRin1plLqoFLqrFLqO6XUX5VSF/u5/U1KKe3HdGmp7XyV9edln1pHVb0qpnOjUmqFvX2uUipdKfWeUupWH9tcrZT6l1LqqL3N10qpZ5VSF1T9yGoewfJKzqvK4aBfQ5VSHymlflRKnVFK7VRK/VEpFe5jmx62p1n2Nv9VSv1WKVWn6kdW8wiGV0qpNhWcWwudO8KagVJqmFLqFaXUx0qpbDtPyZXUCthzJ/5nyZ1JP1Hnt5XcDXTDaiv5NdCzoraSSqk2QEI5q38K3AHs0Fr/tNR2GvgemFvGdhm6jNF4ajNOeGXr/B/wD+A0VjOGDCAGy6dIYKLWelqpba4HPgTqAUuA/cDNQBessdv7aK3PVv0oawZB9krOqwBx0K/ngD8Cp4ClQBYQj3WerANu01qfK7XNYLtsLrDI3mYQ1jC3S7TWv3TgEGsMwfLK/j/3LbAdWF6G5A6t9ZLKHldNRCm1DeiEleMM4CpggdZ6VIA6AXvu2P8sE72k18QJWI01us3DpZa/ZC9/vYr6b9s6j5SxTgMfBTsHbpmc8Mo+sU4AZ4ArS61rj/UPLQeoX2x5HeArex+/KLY8zD5JNfBksPMTSlOwvLLXyXkVHL8622V/AGKLLVfAa/a6x0ptEw0cBc4CXYotj8D656mBEcHOTyhNQfSqjb18brBz4JYJq7J3hZ3Xm+z8JZv23Mn/WUFPohsm4Cd2Ur8Fwkqta4D1a+I0EFVJ/SbF/uE1LGO9/NOrZq+A5rbO9nLW/9de37jYspvtZRvKKB9rr/sO+4lAbZ+C6ZW9XM6r4Pg12db5SxnrLrbXfVNq+b328nllbFPueVdbpyB71QapTFbFu5uoRGWyMp47+T9L2kz6x8/szzVa68LiK7TWJ7FuBUcC3SupPxqoDyzWWp8op0xDpdS9SqnxSqkHlVKV3VdNxymvjgLHgHZKqSuKr1BKtcP6FblNl3xkcLP9uaq0mNZ6H1bXUZdhnaRCcL3yIOeV/zjlVwv7c1/pFdrqDeMHIFYpdXmxVeWeW0Aq1g/xHkqp+hXsu7YQTK88tFJKjbPPrXFKqWsCOgIhUCrjuWP/s6Qy6R9X2p97yln/P/uzXSX1x9qfM32U6QS8AUwDXgU+U0ptU0r91Mc2tRFHvNLWT7MHsc6RNKXUPKXUn5RSbwFpwE6gdBst09+TmkYwvfIg55X/OPX9zrQ/z6uAKKUaYt3xKr4/n/vWWudj3Y2pi/xQ8xBMrzzcAryOdW69DmxXSq1XSrWuYJ9C5aiM5479z5LKpH9cZH/+WM56z/KGgQorpXpjGbpDa72xnGIvYQ3V2BTrdnVXrPYMnYAPlVKXBLrfGoxjXmmtF2P9cjsB3AM8CfwK61HBHM7/tW7se1JDCaZXIOdVoDjlV4r9OdZ+WQMApZTCqnh4KP72qZxbgRFMr3KAKUCcvfxioDfWcMQ3AeuUUlEV7FcInMp47th5JZXJ4HO//VnuWJpa68e11hu11pla61Na6y3aenNxKVZ7y99VR6C1DaXUKGAt8DHWixyR9uc6rLtY0sVFiFAZr+S8Cg5a60+x7gY3BP6rlJqjlHoR+AK4D+sNVIDCshWE6qIyXmmtj2qtn9Jab9Van7CnVKxhiL8A2gKJ1XkcgnmkMukfntr5ReWs9yw/EYioUqoRMBTrLdT5lYjrdfuzVyW2rak44pXd1u5NrEekv9Ja79Zan9Fa78a645UG/FIpdZPT+65FBNMrX8h5VTZOfr/HAuOwuiu50/47G+vO1Td2maOG9l0bCKZXZWI3R/B0tyXnlvNUxnPHvidSmfSPr+3P8toNeBr9l9fuoDw8L978y8eLN744Zn/KI4MinPKqH1aXMxvKaMxciNXoH6xHOU7vu7YQTK98IedV2Tj2/dYWs7TWXbXWUVrrC7XWfbXWn2P1uVsIbPVn30qpulht+vIpuzlDbSSYXvlCzi1zVMZzx74nUpn0j/X2Zz+lVImcKaUaYLW7ygECHTXD8+JNuY+4K8DzVpZcQItwyivPW6FNy1nvWZ5XbNmH9ud5I64opWKxTtjvEb88BNMrX8h5VTamroPFdW4CWgMpWuvi7bjKPbew7nJFAhu1DAjgIZhe+ULOLXNUxnPn/mc51TdSTZ8IvDPQq4CrfOjF29t9WcF+rwHqlbM809a4O9j5CaXJCa+wRg3Q9sl3Tal112I1TSgEOhRb7qsD2MVIp+Wh5JWcV0Hyy14eXcayy4C9WB2Tl/YxGuuulnRaHvpedaZUP4f28j5Y/SlroEew8xOqExX0M4n1FOYq4CcOeO7Y/ywZTtFPyhimaBdwPVbfTnuwTo7jxcprAK21KkdvPjAKa8SbV3zsdy7WkGEfYw1zdBbri3Qr1hdhNjBOi5FenPJKKfUmMAbrjtYyrF9obYAhQDjwV631o6W2KT00VTrWRVSGUyyDYHkl51XlcNCvxVgVkq1Yw/NdDvwC67z5ldZ6URn7HoJ1TuVivVCVZW9zpb38TvGriGB5pZT6COvx6EasoQHB+pHm6dNwktZ6qlPHWROwv9tD7NkWQH+su4Ef28sytda/s8u2weoK63utdZtSOgF5bm/jzP+sYNfC3TQBl2J1M3II65/W98BfgYvLKKuxu8ArY93FWHdLyhzxplTZIcA7WL8Cs+39HgLepdgvCZmc9wpraKsE4COsznnzsS6m6/BxFwS4GutXXSZWJWUP8CxwQbDzEopTMLyS8yrofo3G+kd13NbYD8wD2lew757Ae7bHZ4AvgUeBOsHOSyhOwfAK6y3vlVgjp5yyr4HpWOOpxwc7J6E4Ac948l/O9F2xsm1KL6us58W2qfL/LLkzKQiCIAiCIFQaeQFHEARBEARBqDRSmRQEQRAEQRAqjVQmBUEQBEEQhEojlUlBEARBEASh0khlUhAEQRAEQag0UpkUBEEQBEEQKo1UJgVBEARBEIRKI5VJQRCEIKKUekYppe1ReUqv+85ed1O1ByYIguAnUpkUBCFkUUrNtStTpaeTSqmdSql/KKXaBzvOYKCUukYp9Wul1BtKqf8qpfLt3CwMQOMKe/t0pdRZpdRBpdRCpVRcJeLpoJR6Sin1iVJqv62XrZTarpSaoZTq6adOmFLqZ0qp3yul/qWU+raY778OIJ6+Sql3lVJHlVK5SqlvlFJ/U0o1D/TYBEHwTd1gByAIguAH57CGRwRr6MQmWEOAXQ3cp5QapbVeHKzggsRbQKfKbqyUugVYDkTai37EGhd4ODBUKTVGa53sh04s8Dzwy2KL87GGqbwIa1zma4AHlFJrgfu01uk+JKOxxgquNEqpCYBn/OdCrGH9YoFHgLuUUjdrrXdUZR+CIBQhdyYFQXADG7XWLeypORAB3IY1/m84MEcp1TSYAQaBc8A2IAkYB6z2d0OlVAtgCVZF8gOgjda6IVZlcgHWjYY3lFIdKtDpB2zFqkh+BfwGaA+Ea60bA/WxKnGPATuAvsAOpdSgCkI8DXwMvAzcDRwO4Nh+TlFF8kWgodb6IqAjVr6aAiuUUvX91RQEwTdSmRQEwXVorc9prVcBI+1FUcDQIIYUDLprra/TWo/VWs8igAoX8CTWHcD9wB1a6+8BtNZHgdFAGlYlfXJ5Akqp24AUrNw/Clyjtf671nq31lrbegVa62+11i8D1wK/x6pg/ksp1asc6R+BaK11L631Y1rrt4GzARzbc/bnMq3177TWJ+1YdgKDKLpLeX8AmoIg+EAqk4IguJnPsCoHYD3yLoFSKlwp9ZBS6mOlVJbdju97pdSbFbW1VEo1Vko9q5RKU0qdUErlKKX22G0Kh5RRvpfdJu8Lu+1hnt1eb5VSapgjR1sMrXVBZbZTSoUBI+zZ17TWp4qvt3VfsmcHKqWiy9CIxbqDeQb4udb6rxXFY1cs/4L1GL0usLysu8naojDQ47Lj6kDRo/+/lKGdAbxtz44svV4QhMohlUlBENyOsj/rlFioVEtgE/AKcCNW+72zQGtgDLBVKXVHmYJKxQNfA08BnYELsCpOsViVoWWlyl8IbMBqk9cNuNAu3xToDyxWSs2s4nE6xdWA5yWU8h6Nr7E/w7FyV5oXgYuBcVrrDyraoVIqUinVQikVrrVeDjxhb1/unc9K8jP780fgi3LKeI65m+2bIAhVRCqTgiC4mR5Yj1kB9nkWKqXqASuw7lKts8tFaK2jgVbAX7HaXc5XSv2kuKA9vxJojNXG7mYg0m4D2ADoB7xTKo5CrDaItwONtdbRdju9i4GHsO6e3q+U+iXBx3MHV2O1czwPrXUmcLRUeQCUUtcCQ4Cl9iPo4uv62neBT9t3gpcppa4GHgAOYfkA8HdgD/Crsu58VgFPrLt83N30HLMCrnJw34JQa5HKpCAIrkMpVU8p1R/wvG18DlhUrMhooCvWSxy3aa0/01qfA9BaH9JaPwrMxHoB5dFS8n/Cak+4B+iltV7veYSrtT6jtf5Aa12ifabWOkdr/Uut9XKtdVax5Se01jOwKlMU+wwmLe3PH7TWuT7KHSxV3oPn8fAzxRfaj/JXY93JjMRqGzkE6+7wdcXL2hW9eVg/BG4OKHrfeGI96KNM8XWlj00QhEoglUlBENxAD6XUYXs6AuQCq4A2WHcFx9nt4TyMtj//5qlElsEC+/MWzwL7seft9uxTnpc3HOBd+7O7UqqOz5Lm8dzJPVNBuRz7s/Sj4Nuw7vx5u9ax8zYL63/KS0BDe7trgW+w3sguzaf2Z8B9WvrAn2PLKfa3POYWBAeQfiYFQXAD9Shq51ecLKC/1nqLZ4FSqi5Wu0WAmUqpGeVoeip1lxZb1gXruqixKqt+Y+93NFY3OZ2ARlhtDosTgfXoOzMQ7VBBKaWAKymqiHsYgnVca7TWjxdbvl0pdTuwi/Nz4Xn7vLZ16SQINQ65MykIghvYoLVWWmuFVSG7FquNYiOs/hAvLla2eCWuMVYltKypiV3mgmLbeiqsP2qtf/Q3uGIv4CRhvXDTAigAjgFH7MlD1HkC1ctp+/MCn6WKOjMv/rZ3Y6zK9qFSZT2PsReVWo7Weh/Wo+7SeNpK5lUQRyD4c2yRxf4+VW4pQRD8RiqTgiC4Cq31Wa31duBOrDZ612C1f/RQ/Lp2nacS6mtyIKxJWC+XZGLdnWyutY7UWjfTWrcALilW1on9VQVPm8GLlVIRPsq1sj+LVxw9sZd+quWpGJbXVrGs5Zfbn/t9xBAonv208lGm+LrSlWJBECqBVCYFQXAldsfYj2DdAfylUqq3veq4vQysboACwXMH8SKl1EUBbOd5S/thrfVbduffxQml8aCLv818Xt+cAEqpJkCzUuWhKLctSm1ywv6MKWefZS33vMjzUfmhBown1vZ2f5plUfxt9l0O7lsQai1SmRQEwbVorfdQ9Gh1mr3sHOBpQ3lbgJJbsMaVVgFu66ks/aec9X0DjMMkuyiqNN9SThnP8jzgE89C+y3sfUD3UuU325+/Ki2klLoKuL7UshuxRqPZpLXeXHqbKrDe/rwI623+suhnf36htT5dThlBEAJAKpOCILid6fZnT6XUTfbfc+3PBKVUp9IbFKd4e0t7NBhPh+TPKqUa+BmDp33lT8vQvxCY4KeOcewK4UJ79gGlVIk2nPYdPU93Se9qrbNLSawB2pYat/tdrBdqeiml5iil2imlGiil+tjrPC87XayUehB4D+ut6kTHDgzQWn8FbLdnnyi9XinVCrjLni39EpEgCJVEKpOCILgarfV/gLX27ET78w3gc6yXdT5USo0t3jm2PRrLSKXUBuA3pSTHAyeBdkCqUupnnkemSqkLlFIDlFLvldrGMwrMS0qp3vZbzyilumJ1mt7YkYMthj2qTBPPhNWvI0B48eXljPLyPJCN1QzgHaVUa1uzKVZFvCvWXcmny9j2X/anJ9dorc8ACfY2CVijB2Vj+RINvG4XfQd4Favy3Vdr/WU5x3ZRqWPz/K+KKnVs9cvYfLz9OVQp9WfPDwK78/R3sTqe3wfMLmvfgiBUAq21TDLJJFNITlgVGw18VEG5W+xyGuhuL2uG9YjWs7wAq83fqWLLNPB0GXo/A34oViYX6+WafM+yUuVjsd7c9pQ/U2w/OViPVj3r2pTa9hl7+dwy4vjOXndTGeueoeRxlDedp1ssZ6eLlTuB1WenxuoEfpSPfH9kl72t1PI4rLfs92G1X3wN64WXcfb8cuB+rNGIfPn5kZ/HllDO9hOLlcnHqrx65o8BHYP93ZZJppo0yZ1JQRBcj7bGh/a0V5xkLzsK9MZ60eM9rEqE57H1buAtrDfCny9Dbz1Wf4ovADuwKiQRWB1wvw38olT5fVh9WyZjDUNYB6tytgDoqrVeQ4hh5+xaYA6QgdWdzhGsO4/dtdbJ5W/Nb7Aq2G8rpbydjmut07TWw7TWsVrrq7XW/6e1Pqi1nmnPD9Faz9K+R96pMlrrqViV5RSsHwX1sSq4f8eqSO7wsbkgCAGitNbBjkEQBEFwGUqpUcB8rDuvDwBv6Qr+oSil7gYOaq0/Mh+hIAjVhVQmBUEQhEphVw7fxLrz9x+s/j5XAen6/9u7YxuFYiAIoPMbOFEAKfkFFEALV8T1QBfUQEXEFEATCGkJ/CWIFxAIvRc6cjiyPLtVNf8dXWW02f8zXkIPSdY1ikDAFxAmAWibpuk3yS7J5u74klHA+cltwPk5Y0PQtp638xz4AMIkAA+bZ0f+ZZSXlkkWGYWnY8Y4oX1Vnd52QeBlhEkAANq0uQEAaBMmAQBoEyYBAGgTJgEAaBMmAQBoEyYBAGi7AgB0KE715rC3AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "