-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathtrain_semi_supervised.py
138 lines (114 loc) · 6.74 KB
/
train_semi_supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: MIT
General-purpose semi-supervised training script for ScrabbleGAN.
You need to specify the labeled dataset ('--dataname'), unlabeled dataset ('--unlabeled_dataname'),
('--disjoint') if the training is disjoint (the recognizer sees only the labeled data and the discriminator sees only the unlabeled data)
and experiment name prefix ('--name_prefix').
It first creates model, dataset, and visualizer given the option.
It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models.
The script supports continue/resume training. Use '--continue_train' to resume your previous training.
Example:
python train_semi_supervised.py --dataname IAMcharH32W16rmPunct --unlabeled_dataname CVLtrH32 --disjoint
See options/base_options.py and options/train_options.py for more training options.
"""
import time
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer import Visualizer
from util.util import seed_rng
from util.util import prepare_z_y, get_curr_data
import torch
from itertools import cycle
if __name__ == '__main__':
opt = TrainOptions().parse() # get training options
seed_rng(opt.seed)
torch.backends.cudnn.benchmark = True
opt.labeled = True
dataset_labeled = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
opt.labeled = False
opt.dataroot = opt.unlabeled_dataroot
dataset_unlabeled = create_dataset(opt)
dataset_size = max(len(dataset_labeled),len(dataset_unlabeled)) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size)
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
total_iters = 0 # the total number of training iterations
opt.iter = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
if len(dataset_unlabeled) > len(dataset_labeled):
zip_dataset = zip(cycle(dataset_labeled), dataset_unlabeled)
else:
zip_dataset = zip(dataset_labeled, cycle(dataset_unlabeled))
for i, (data_labeled, data_unlabeled) in enumerate(zip_dataset): # inner loop within one epoch
opt.iter = i
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_iters += opt.batch_size*opt.num_accumulations
epoch_iter += opt.batch_size*opt.num_accumulations
if opt.num_critic_train == 1:
curr_data = data_labeled
model.set_input(curr_data) # unpack data from dataset and apply preprocessing
model.optimize_G()
if opt.disjoint:
model.optimize_OCR()
else:
model.optimize_D_OCR()
model.optimize_G_step()
model.optimize_D_OCR_step()
curr_data = data_unlabeled
model.set_input(curr_data) # unpack data from dataset and apply preprocessing
model.optimize_G()
model.optimize_D()
model.optimize_G_step()
model.optimize_D_OCR_step()
else:
if (i % opt.num_critic_train) == 0:
curr_data = data_labeled
model.set_input(curr_data) # unpack data from dataset and apply preprocessing
model.optimize_G()
model.optimize_G_step()
curr_data = data_unlabeled
model.set_input(curr_data) # unpack data from dataset and apply preprocessing
model.optimize_G()
model.optimize_G_step()
curr_data = data_labeled
model.set_input(curr_data) # unpack data from dataset and apply preprocessing
if opt.disjoint:
model.optimize_OCR()
else:
model.optimize_D_OCR()
model.optimize_D_OCR_step()
curr_data = data_unlabeled
model.set_input(curr_data) # unpack data from dataset and apply preprocessing
model.optimize_D()
model.optimize_D_OCR_step()
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / (opt.batch_size*opt.num_accumulations)
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
torch.cuda.empty_cache()
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate() # update learning rates at the end of every epoch.