diff --git a/src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py b/src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py index cd05819e479a..1c7b53f82b15 100644 --- a/src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py +++ b/src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py @@ -144,13 +144,15 @@ def __call__( The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. - return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'np'`): - If set, will return tensors of a particular framework. Acceptable values are: - - - `'tf'`: Return TensorFlow `tf.constant` objects. - - `'pt'`: Return PyTorch `torch.Tensor` objects. - - `'np'`: Return NumPy `np.ndarray` objects. - - `'jax'`: Return JAX `jnp.ndarray` objects. + return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `None`): + If set, will return a tensor of a particular framework. + + Acceptable values are: + - `'tf'`: Return TensorFlow `tf.constant` object. + - `'pt'`: Return PyTorch `torch.Tensor` object. + - `'np'`: Return NumPy `np.ndarray` object. + - `'jax'`: Return JAX `jnp.ndarray` object. + - None: Return list of `np.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: diff --git a/tests/models/layoutlmv2/test_feature_extraction_layoutlmv2.py b/tests/models/layoutlmv2/test_feature_extraction_layoutlmv2.py index 59c30d779c5f..654fc9915913 100644 --- a/tests/models/layoutlmv2/test_feature_extraction_layoutlmv2.py +++ b/tests/models/layoutlmv2/test_feature_extraction_layoutlmv2.py @@ -18,6 +18,7 @@ import numpy as np +from parameterized import parameterized from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available @@ -219,3 +220,33 @@ def test_layoutlmv2_integration_test(self): 224, ), ) + + @parameterized.expand( + [ + ("do_resize_True", True), + ("do_resize_False", False), + ] + ) + def test_call_flags(self, _, do_resize): + # Initialize feature_extractor + feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) + feature_extractor.do_resize = do_resize + # create random PIL images + image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False) + + expected_shapes = [(3, *x.size[::-1]) for x in image_inputs] + if do_resize: + expected_shapes = [ + ( + self.feature_extract_tester.num_channels, + self.feature_extract_tester.size, + self.feature_extract_tester.size, + ) + for _ in range(self.feature_extract_tester.batch_size) + ] + + pixel_values = feature_extractor(image_inputs, return_tensors=None)["pixel_values"] + self.assertEqual(len(pixel_values), self.feature_extract_tester.batch_size) + for idx, image in enumerate(pixel_values): + self.assertEqual(image.shape, expected_shapes[idx]) + self.assertIsInstance(image, np.ndarray)