forked from udacity/aipnd-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifiers.py
103 lines (75 loc) · 3.54 KB
/
classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import torch
from torch import nn
import torch.nn.functional as F
import time
import copy
class Network(nn.Module):
def __init__(self, input_size, hidden_sizes, output_size):
super().__init__()
self.hidden_sizes = nn.ModuleList([nn.Linear(input_size, hidden_sizes[0])])
self.hidden_sizes.extend([
nn.Linear(h1, h2) for h1, h2 in zip(hidden_sizes[:-1], hidden_sizes[1:])
])
self.output = nn.Linear(hidden_sizes[-1], output_size)
self.dropout = nn.Dropout(p=0.35)
def forward(self, x):
for layer in self.hidden_sizes:
x = F.relu(layer(x))
x = self.dropout(x)
x = self.output(x)
return F.log_softmax(x, dim=1)
def train_model(model, criterion, optimizer, scheduler, image_datasets, dataloaders, epochs, gpu):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if gpu else "cpu"
model.to(device)
start = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch, _ in enumerate(range(epochs), start=1):
print('Epoch {}/{}'.format(epoch, epochs))
print('-' * 10)
for phase in ['train', 'valid']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for _, (inputs, labels) in enumerate(dataloaders[phase]):
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(predicted == labels.data)
epoch_loss = running_loss / len(image_datasets[phase])
epoch_acc = running_corrects.double() / len(image_datasets[phase])
print('{} Loss: {:.4f}, Accuracy: {:.2f}%'.format(
phase.capitalize(), epoch_loss, epoch_acc*100
))
if phase == 'valid' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print('\n')
stop = time.time() - start
print('Training Completed in {:.0f}m {:.0f}s using {}'.format(
stop // 60, stop % 60, device
))
print('Best Validation Accuracy achieved is {:.2f}%'.format(best_acc*100))
model.load_state_dict(best_model_wts)
return model
def display_test_accuracy(model, dataloaders, gpu):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if gpu else "cpu"
model.to(device)
model.eval()
accuracy = 0
for _, (inputs, labels) in enumerate(dataloaders['test']):
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
equality = (labels.data == outputs.max(1)[1])
accuracy += equality.type_as(torch.FloatTensor()).mean()
print('Test Accuracy achieved is {:.2f}%'.format(100*accuracy/len(dataloaders['test'])))