-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbacktesting.py
67 lines (53 loc) · 2.38 KB
/
backtesting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""
@Author : Ambikeshwar
"""
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import fix_yahoo_finance as yf
from pandas.tseries.offsets import BDay
pwd:P@ssw0rd
username=ambi
class BackTesting(object):
DEFAULT_INITIAL_CAPITAL = float(1000000.0)
DEFAULT_QTY_TRADES = 100
def __init__(self, ticker):
self.ticker = ticker
self.asset_prices = yf.download(self.ticker)
self.signals = None
self.portfolio = None
self.positions = None
def generate_signals(self):
raise NotImplementedError("Child class needs to implement this method.")
def plot_signals(self):
raise NotImplementedError("Child class needs to implement this method.")
def _generate_positions(self):
self.positions = pd.DataFrame(index=self.signals.index).fillna(0.0)
self.positions[self.ticker] = self.DEFAULT_QTY_TRADES * self.signals['signal']
def backtest_portfolio(self):
self._generate_positions()
print(self.positions)
# Initialize the portfolio with value owned
self.portfolio = self.positions.multiply(self.asset_prices['Close'], axis=0)
# Store the difference in shares owned
pos_diff = self.positions.diff()
# Add `holdings` to portfolio
self.portfolio['holdings'] = (self.positions.multiply(self.asset_prices['Close'], axis=0)).sum(axis=1)
# Add `cash` to portfolio
self.portfolio['cash'] = self.DEFAULT_INITIAL_CAPITAL - \
(pos_diff.multiply(self.asset_prices['Close'], axis=0)).sum(axis=1).cumsum()
self.portfolio['total'] = self.portfolio['cash'] + self.portfolio['holdings']
self.portfolio['returns'] = self.portfolio['total'].pct_change()
def plot_portfolio(self):
fig = plt.figure()
ax1 = fig.add_subplot(111, ylabel='Portfolio value in $')
ax1.plot(self.signals.index.map(mdates.date2num), self.portfolio['total'])
ax1.plot(self.portfolio.loc[self.signals.positions == 1.0].index,
self.portfolio.total[self.signals.positions == 1.0],
'^', markersize=10, color='m')
ax1.plot(self.portfolio.loc[self.signals.positions == -1.0].index,
self.portfolio.total[self.signals.positions == -1.0],
'v', markersize=10, color='k')
plt.show()