-
Notifications
You must be signed in to change notification settings - Fork 15
/
PFTLS_Chapter_18.py
executable file
·148 lines (121 loc) · 4.89 KB
/
PFTLS_Chapter_18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!/usr/bin/env python3
__author__ = 'Amber Biology LLC'
# Python For The Life Sciences
# By Alex Lancaster & Gordon Webster
# Chapter 18
# The text of the book is (c) Amber Biology LLC (www.amberbiology.com)
# The Python code from the book is released into the public domain, as follows:
# This is free and unencumbered software released into the public domain.
#
# Anyone is free to copy, modify, publish, use, compile, sell, or
# distribute this software, either in source code form or as a compiled
# binary, for any purpose, commercial or non-commercial, and by any
# means.
#
# In jurisdictions that recognize copyright laws, the author or authors
# of this software dedicate any and all copyright interest in the
# software to the public domain. We make this dedication for the benefit
# of the public at large and to the detriment of our heirs and
# successors. We intend this dedication to be an overt act of
# relinquishment in perpetuity of all present and future rights to this
# software under copyright law.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
#
# For more information, please refer to <http://unlicense.org/>
from random import shuffle
from numpy.random import random
import matplotlib.pyplot as plt
class Patient():
# default state is susceptible
def __init__(self, state = 'susceptible'): self.state = state
def infect(self): self.state = 'infected'
def recover(self):
self.state = 'recovered'
if False: # set to true to explore alternative model
if random() < 0.8:
self.state = 'susceptible'
class PatientList():
# create lists for each type of agents
def __init__(self):
self.susceptible_agents = []
self.infected_agents = []
self.recovered_agents = []
def append(self, agent):
if agent.state == 'susceptible': self.susceptible_agents.append(agent)
elif agent.state == 'infected': self.infected_agents.append(agent)
elif agent.state == 'recovered': self.recovered_agents.append(agent)
else: print("error: must be one of the three valid states")
def infect(self):
shuffle(self.susceptible_agents) # shuffle list to get in random order
patient = self.susceptible_agents.pop() # get patient and remove from list
patient.infect()
self.append(patient) # internal method will handle appropriate list
def recover(self):
shuffle(self.infected_agents)
patient = self.infected_agents.pop()
patient.recover()
self.append(patient)
def get_num_susceptible(self): return len(self.susceptible_agents)
def get_num_infected(self): return len(self.infected_agents)
def get_num_recovered(self): return len(self.recovered_agents)
def get_num_total(self): return len(self.susceptible_agents)+len(self.infected_agents)+len(self.recovered_agents)
beta = 0.09 # susceptibility rate
gamma = 0.05 # recovery rate
susceptible_count = 1000
infected_count = 1
recovered_count = 0
# lists to record output
S = []
I = []
R = []
t = []
time = 0.0
patients = PatientList()
# create the individuals patients
for indiv in range(susceptible_count):
agent = Patient() # by default all new patients are susceptible
patients.append(agent) # add to list
for indiv in range(infected_count):
agent = Patient(state='infected')
patients.append(agent)
for indiv in range(recovered_count):
agent = Patient(state='recovered')
patients.append(agent)
while patients.get_num_infected() > 0:
for susc in range(patients.get_num_susceptible()):
if random() < beta * (patients.get_num_infected() / float(patients.get_num_total())):
patients.infect() # infect patient
for infected in range(patients.get_num_infected()):
if random() < gamma:
patients.recover() # recover patient
# print "after update:", time, patients.num_susceptible, patients.num_infected, patients.num_recovered, num_total
# record values for plotting
t.append(time)
S.append(patients.get_num_susceptible())
I.append(patients.get_num_infected())
R.append(patients.get_num_recovered())
# update time
time += 1
# plot output
fig1 = plt.figure()
plt.xlim(0, max(t))
plt.ylim(0, susceptible_count+infected_count+recovered_count)
plt.xlabel('time')
plt.ylabel('# patients')
plt.plot(t, S, label="S")
plt.plot(t, I, label="I")
plt.plot(t, R, label="R")
plt.legend()
plt.show()
# Local variables:
# indent-tabs-mode: nil
# tab-width: 2
# py-indent-tabs-mode: nil
# End: