-
Notifications
You must be signed in to change notification settings - Fork 298
/
evaluate.py
253 lines (220 loc) · 7.99 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import logging
from pathlib import Path
from typing import Iterable, Optional
import datasets
import numpy as np
import pandas as pd
import torch
import typer
import yaml
from gluonts.dataset.split import split
from gluonts.ev.metrics import MASE, MeanWeightedSumQuantileLoss
from gluonts.itertools import batcher
from gluonts.model.evaluation import evaluate_forecasts
from gluonts.model.forecast import QuantileForecast, SampleForecast
from tqdm.auto import tqdm
from chronos import (
BaseChronosPipeline,
ChronosBoltPipeline,
ChronosPipeline,
ForecastType,
)
app = typer.Typer(pretty_exceptions_enable=False)
def to_gluonts_univariate(hf_dataset: datasets.Dataset):
series_fields = [
col
for col in hf_dataset.features
if isinstance(hf_dataset.features[col], datasets.Sequence)
]
series_fields.remove("timestamp")
dataset_length = hf_dataset.info.splits["train"].num_examples * len(series_fields)
# Assumes that all time series in the dataset have the same frequency
dataset_freq = pd.DatetimeIndex(hf_dataset[0]["timestamp"]).to_period()[0].freqstr
gts_dataset = []
for hf_entry in hf_dataset:
for field in series_fields:
gts_dataset.append(
{
"start": pd.Period(
hf_entry["timestamp"][0],
freq=dataset_freq,
),
"target": hf_entry[field],
}
)
assert len(gts_dataset) == dataset_length
return gts_dataset
def load_and_split_dataset(backtest_config: dict):
hf_repo = backtest_config["hf_repo"]
dataset_name = backtest_config["name"]
offset = backtest_config["offset"]
prediction_length = backtest_config["prediction_length"]
num_rolls = backtest_config["num_rolls"]
# This is needed because the datasets in autogluon/chronos_datasets_extra cannot
# be distribued due to license restrictions and must be generated on the fly
trust_remote_code = True if hf_repo == "autogluon/chronos_datasets_extra" else False
ds = datasets.load_dataset(
hf_repo, dataset_name, split="train", trust_remote_code=trust_remote_code
)
ds.set_format("numpy")
gts_dataset = to_gluonts_univariate(ds)
# Split dataset for evaluation
_, test_template = split(gts_dataset, offset=offset)
test_data = test_template.generate_instances(prediction_length, windows=num_rolls)
return test_data
def generate_forecasts(
test_data_input: Iterable,
pipeline: BaseChronosPipeline,
prediction_length: int,
batch_size: int,
**predict_kwargs,
):
# Generate forecasts
forecast_outputs = []
for batch in tqdm(batcher(test_data_input, batch_size=batch_size)):
context = [torch.tensor(entry["target"]) for entry in batch]
forecast_outputs.append(
pipeline.predict(
context,
prediction_length=prediction_length,
**predict_kwargs,
).numpy()
)
forecast_outputs = np.concatenate(forecast_outputs)
# Convert forecast samples into gluonts Forecast objects
forecasts = []
for item, ts in zip(forecast_outputs, test_data_input):
forecast_start_date = ts["start"] + len(ts["target"])
if pipeline.forecast_type == ForecastType.SAMPLES:
forecasts.append(
SampleForecast(samples=item, start_date=forecast_start_date)
)
elif pipeline.forecast_type == ForecastType.QUANTILES:
forecasts.append(
QuantileForecast(
forecast_arrays=item,
forecast_keys=list(map(str, pipeline.quantiles)),
start_date=forecast_start_date,
)
)
return forecasts
@app.command()
def main(
config_path: Path,
metrics_path: Path,
chronos_model_id: str = "amazon/chronos-t5-small",
device: str = "cuda",
torch_dtype: str = "bfloat16",
batch_size: int = 32,
num_samples: int = 20,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
):
"""Evaluate Chronos models.
Parameters
----------
config_path : Path
Path to the evaluation config. See ./configs/.
metrics_path : Path
Path to the CSV file where metrics will be saved.
chronos_model_id : str, optional, default = "amazon/chronos-t5-small"
HuggingFace ID of the Chronos model or local path
Available models on HuggingFace:
Chronos:
- amazon/chronos-t5-tiny
- amazon/chronos-t5-mini
- amazon/chronos-t5-small
- amazon/chronos-t5-base
- amazon/chronos-t5-large
Chronos-Bolt:
- amazon/chronos-bolt-tiny
- amazon/chronos-bolt-mini
- amazon/chronos-bolt-small
- amazon/chronos-bolt-base
device : str, optional, default = "cuda"
Device on which inference will be performed
torch_dtype : str, optional
Model's dtype, by default "bfloat16"
batch_size : int, optional, default = 32
Batch size for inference. For Chronos-Bolt models, significantly larger
batch sizes can be used
num_samples : int, optional, default = 20
Number of samples to draw when using the original Chronos models
temperature : Optional[float], optional, default = 1.0
Softmax temperature to used for the original Chronos models
top_k : Optional[int], optional, default = 50
Top-K sampling, by default None
top_p : Optional[float], optional, default = 1.0
Top-p sampling, by default None
"""
if isinstance(torch_dtype, str):
torch_dtype = getattr(torch, torch_dtype)
assert isinstance(torch_dtype, torch.dtype)
# Load Chronos
pipeline = BaseChronosPipeline.from_pretrained(
chronos_model_id,
device_map=device,
torch_dtype=torch_dtype,
)
if isinstance(pipeline, ChronosPipeline):
predict_kwargs = dict(
num_samples=num_samples,
temperature=temperature,
top_k=top_k,
top_p=top_p,
)
elif isinstance(pipeline, ChronosBoltPipeline):
predict_kwargs = {}
# Load backtest configs
with open(config_path) as fp:
backtest_configs = yaml.safe_load(fp)
result_rows = []
for config in backtest_configs:
dataset_name = config["name"]
prediction_length = config["prediction_length"]
logger.info(f"Loading {dataset_name}")
test_data = load_and_split_dataset(backtest_config=config)
logger.info(
f"Generating forecasts for {dataset_name} "
f"({len(test_data.input)} time series)"
)
forecasts = generate_forecasts(
test_data.input,
pipeline=pipeline,
prediction_length=prediction_length,
batch_size=batch_size,
**predict_kwargs,
)
logger.info(f"Evaluating forecasts for {dataset_name}")
metrics = (
evaluate_forecasts(
forecasts,
test_data=test_data,
metrics=[
MASE(),
MeanWeightedSumQuantileLoss(np.arange(0.1, 1.0, 0.1)),
],
batch_size=5000,
)
.reset_index(drop=True)
.to_dict(orient="records")
)
result_rows.append(
{"dataset": dataset_name, "model": chronos_model_id, **metrics[0]}
)
# Save results to a CSV file
results_df = (
pd.DataFrame(result_rows)
.rename(
{"MASE[0.5]": "MASE", "mean_weighted_sum_quantile_loss": "WQL"},
axis="columns",
)
.sort_values(by="dataset")
)
results_df.to_csv(metrics_path, index=False)
if __name__ == "__main__":
logging.basicConfig(format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
logger = logging.getLogger("Chronos Evaluation")
logger.setLevel(logging.INFO)
app()