-
Notifications
You must be signed in to change notification settings - Fork 0
/
feat_combine_auto.m
44 lines (34 loc) · 1.16 KB
/
feat_combine_auto.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
cellline = {'TMK1','MKN7'};
imgroot = 'C:\ForAlex\GC_IMAGES\';
bins = [256 128 64 32 16 8];
rates = [1];
method.id = 3;
method.resolution = 6.45/40;;
method.celllevel=1;
method.thresmethod = 'lowcommon';
for c=2:2
for i=2:2%length(cellline)
dirs = dir([imgroot filesep cellline{i}]); dirs([1 2]) = [];
feats = [];
for j=1:length(dirs)
method.procfilesmatname = [pwd filesep 'meta' cellline{i} filesep dirs(j).name filesep 'procfiles.mat'];
method.resultdir = [pwd filesep 'meta' cellline{i} filesep dirs(j).name];
method.celllevel=1;
for b=1:1%length(bins)
for r=1:1%length(rates)
method.har_intbins = bins(b); method.downsamplerate = rates(r);
method.c = c;
feats = [feats; sc_feat_combine_auto(method)];
end
end
size(feats)
end
end
pwdstr = pwd;
savestr = ['FeatC' num2str(c) '.mat'];
save(savestr,'feats');
fprintf(1,'%s (%d images) is saved ...\n\n', savestr, size(feats,1));
[H, p] = ttest(feats(1:5,:), feats(6:10,:))
H'
p'
end