From 7be71cd76162e63b38b1f55bb65633fef3fc1b53 Mon Sep 17 00:00:00 2001 From: Pete Date: Fri, 19 Apr 2024 08:56:51 -0700 Subject: [PATCH] use correct PG when collecting metrics with HYBRID shard (#551) --- olmo/optim.py | 33 ++++++++++++++++++++++++--------- olmo/train.py | 10 ++++++++-- scripts/train.py | 2 +- 3 files changed, 33 insertions(+), 12 deletions(-) diff --git a/olmo/optim.py b/olmo/optim.py index 79e9dfa09..2f2634238 100644 --- a/olmo/optim.py +++ b/olmo/optim.py @@ -39,7 +39,10 @@ def _clean_param_name(self, name: str) -> str: @torch.no_grad() def clip_grads_and_collect_metrics( - self, global_step: int, collect_param_metrics: bool = True + self, + global_step: int, + collect_param_metrics: bool = True, + process_group: Optional[dist.ProcessGroup] = None, ) -> Dict[str, torch.Tensor]: """ Clips gradients for every group that has the field `max_grad_norm`. @@ -69,6 +72,10 @@ def clip_grads_and_collect_metrics( per_param_avg_metric_names: List[str] = [] per_param_norm_metric_names: List[str] = [] + dst_rank = 0 + if process_group is not None: + dst_rank = dist.get_global_rank(process_group, 0) + # Collect metrics locally. for group in self.param_groups: if is_distributed(): @@ -144,12 +151,12 @@ def is_grad_norm_metric(metric_name: str) -> bool: # Reduce mins. if per_param_min_metrics: all_mins = torch.cat(per_param_min_metrics).to(device) - dist.reduce(all_mins, 0, op=dist.ReduceOp.MIN) + dist.reduce(all_mins, dst_rank, op=dist.ReduceOp.MIN, group=process_group) per_param_min_metrics = all_mins.split(1) # Reduce maxs. if per_param_max_metrics: all_maxs = torch.cat(per_param_max_metrics).to(device) - dist.reduce(all_maxs, 0, op=dist.ReduceOp.MAX) + dist.reduce(all_maxs, dst_rank, op=dist.ReduceOp.MAX, group=process_group) per_param_max_metrics = all_maxs.split(1) # Reduce sums or just norms. all_norms = torch.cat(per_param_norm_metrics).to(device) ** 2.0 @@ -159,13 +166,13 @@ def is_grad_norm_metric(metric_name: str) -> bool: all_sums_norms_numels = torch.cat( [all_sums.unsqueeze(0), all_norms.unsqueeze(0), all_numels.unsqueeze(0)], dim=0 ) - dist.all_reduce(all_sums_norms_numels, op=dist.ReduceOp.SUM) + dist.all_reduce(all_sums_norms_numels, op=dist.ReduceOp.SUM, group=process_group) all_sums, all_norms, all_numels = all_sums_norms_numels.split(1) # Get averages. # NOTE: could get infs for non-rank0 processes but that's okay. per_param_avg_metrics = (all_sums / all_numels).squeeze(0).split(1) else: - dist.all_reduce(all_norms, op=dist.ReduceOp.SUM) + dist.all_reduce(all_norms, op=dist.ReduceOp.SUM, group=process_group) grad_norm_metric_mask = torch.tensor( [float(is_grad_norm_metric(n)) for n in per_param_norm_metric_names], device=all_norms.device ) @@ -325,8 +332,10 @@ def _do_global_fixed_clipping( p.grad.detach().mul_(clip_coef_clamped.to(p.grad.device, p.grad.dtype)) return num_grads_clipped - def get_post_step_metrics(self, module: nn.Module) -> Dict[str, torch.Tensor]: - del module + def get_post_step_metrics( + self, module: nn.Module, process_group: Optional[dist.ProcessGroup] = None + ) -> Dict[str, torch.Tensor]: + del module, process_group return {} def get_state_for_param(self, param: nn.Parameter) -> Dict[str, Optional[torch.Tensor]]: @@ -356,7 +365,9 @@ def __init__( self._update_total_norm: Optional[torch.Tensor] = None self._signed_update_total_norm: Optional[torch.Tensor] = None - def get_post_step_metrics(self, module: nn.Module) -> Dict[str, torch.Tensor]: + def get_post_step_metrics( + self, module: nn.Module, process_group: Optional[dist.ProcessGroup] = None + ) -> Dict[str, torch.Tensor]: update_total_dot_prod = self._update_total_dot_prod update_total_norm = self._update_total_norm signed_update_total_norm = self._signed_update_total_norm @@ -370,7 +381,11 @@ def get_post_step_metrics(self, module: nn.Module) -> Dict[str, torch.Tensor]: # Reduce all together to avoid multiple communication calls. all_together = torch.stack([update_total_dot_prod, update_total_norm, signed_update_total_norm]) # Only need the final result on rank0, since that's where we log from. - dist.reduce(all_together, 0) + dist.reduce( + all_together, + 0 if process_group is None else dist.get_global_rank(process_group, 0), + group=process_group, + ) update_total_dot_prod, update_total_norm, signed_update_total_norm = all_together update_total_norm = update_total_norm**0.5 signed_update_total_norm = signed_update_total_norm**0.5 diff --git a/olmo/train.py b/olmo/train.py index 71a45312e..e9ddf95f9 100644 --- a/olmo/train.py +++ b/olmo/train.py @@ -704,7 +704,11 @@ def train_step(self, batch: Dict[str, Any], reduce_global_loss: bool = True) -> # Clip gradient norms and collect param/gradient/optim metrics. should_log_optim_metrics_this_step = self.should_log_optim_metrics_this_step() optim_metrics = self.optim.clip_grads_and_collect_metrics( - self.global_step, collect_param_metrics=should_log_optim_metrics_this_step + self.global_step, + collect_param_metrics=should_log_optim_metrics_this_step, + # passing this process group here ensures metrics are reduced correctly when we're using + # HYBRID sharding. + process_group=self.fsdp_model.process_group, ) # Adjust the learning rate. @@ -742,7 +746,9 @@ def train_step(self, batch: Dict[str, Any], reduce_global_loss: bool = True) -> # Maybe collect post-step optimizer-specific metrics. if should_log_optim_metrics_this_step: - optim_metrics = self.optim.get_post_step_metrics(self.fsdp_model) + optim_metrics = self.optim.get_post_step_metrics( + self.fsdp_model, process_group=self.fsdp_model.process_group + ) for key, value in optim_metrics.items(): metrics[f"optim/{key}"] = value.item() diff --git a/scripts/train.py b/scripts/train.py index 8bf2cd097..295a65713 100644 --- a/scripts/train.py +++ b/scripts/train.py @@ -154,7 +154,7 @@ def dummy_init_fn(module: torch.nn.Module) -> None: raise OLMoConfigurationError("fsdp.hybrid_sharding_num_model_replicas must be a positive integer") num_nodes = get_world_size() // get_local_world_size() - if num_nodes % num_model_replicas != 0: + if num_nodes > 1 and num_nodes % num_model_replicas != 0: raise OLMoConfigurationError("fsdp.hybrid_sharding_num_model_replicas must divide number of nodes") device_mesh = init_device_mesh("cuda", (num_model_replicas, get_world_size() // num_model_replicas))